On Uncertain Graphs (Synthesis Lectures on Data Management)
暫譯: 不確定圖論(數據管理綜合講座)

Arijit Khan, Yuan Ye, Lei Chen

  • 出版商: Morgan & Claypool
  • 出版日期: 2018-07-23
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 94
  • 裝訂: Hardcover
  • ISBN: 1681734001
  • ISBN-13: 9781681734002
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Large-scale, highly interconnected networks, which are often modeled as graphs, pervade both our society and the natural world around us. Uncertainty, on the other hand, is inherent in the underlying data due to a variety of reasons, such as noisy measurements, lack of precise information needs, inference and prediction models, or explicit manipulation, e.g., for privacy purposes. Therefore, uncertain, or probabilistic, graphs are increasingly used to represent noisy linked data in many emerging application scenarios, and they have recently become a hot topic in the database and data mining communities. Many classical algorithms such as reachability and shortest path queries become #P-complete and, thus, more expensive over uncertain graphs. Moreover, various complex queries and analytics are also emerging over uncertain networks, such as pattern matching, information diffusion, and influence maximization queries. In this book, we discuss the sources of uncertain graphs and their applications, uncertainty modeling, as well as the complexities and algorithmic advances on uncertain graphs processing in the context of both classical and emerging graph queries and analytics. We emphasize the current challenges and highlight some future research directions.

商品描述(中文翻譯)

大型、高度互聯的網絡,通常被建模為圖形,遍佈於我們的社會和周圍的自然世界。另一方面,由於各種原因,例如噪聲測量、缺乏精確的信息需求、推斷和預測模型,或明確的操控(例如,出於隱私目的),潛在數據中固有的不確定性。因此,不確定性或概率圖在許多新興應用場景中越來越多地用來表示噪聲連結數據,並且最近在數據庫和數據挖掘社群中成為熱門話題。許多經典算法,如可達性和最短路徑查詢,在不確定圖上變得 #P-complete,因此成本更高。此外,各種複雜查詢和分析也在不確定網絡上出現,例如模式匹配、信息擴散和影響最大化查詢。在本書中,我們討論不確定圖的來源及其應用、不確定性建模,以及在經典和新興圖查詢和分析背景下不確定圖處理的複雜性和算法進展。我們強調當前的挑戰並指出一些未來的研究方向。