Probabilistic Ranking Techniques in Relational Databases (Synthesis Lectures on Data Management)
暫譯: 關聯式資料庫中的機率排名技術(資料管理綜合講座)

Ihab F. Ilyas, Mohamed A. Soliman

  • 出版商: Morgan & Claypool
  • 出版日期: 2011-03-22
  • 售價: $1,290
  • 貴賓價: 9.5$1,226
  • 語言: 英文
  • 頁數: 80
  • 裝訂: Paperback
  • ISBN: 160845567X
  • ISBN-13: 9781608455676
  • 相關分類: 資料庫SQL
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on discussing the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we describe new processing techniques leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. Under the attribute-level uncertainty model, we describe new probabilistic ranking models and a set of query evaluation algorithms, including sampling-based techniques. We also discuss supporting rank join queries on uncertain data, and we show how to extend current rank join methods to handle uncertainty in scoring attributes. Table of Contents: Introduction / Uncertainty Models / Query Semantics / Methodologies / Uncertain Rank Join / Conclusion

商品描述(中文翻譯)

排名查詢在數據探索、數據分析和決策制定場景中被廣泛使用。雖然目前大多數提出的排名技術專注於確定性數據,但一些新興應用涉及不精確或不確定的數據。對不確定數據進行排名帶來了查詢語義和處理的新挑戰,使得傳統方法無法適用。此外,排名與不確定性模型之間的相互作用為排序查詢結果引入了傳統環境中不存在的新維度。

本講座描述了針對不確定數據的排名查詢的新公式和處理技術。這些公式基於傳統排名語義與在廣泛採用的不確定性模型下的可能世界語義的結合。特別地,我們專注於討論元組級和屬性級不確定性對排名查詢的語義和處理技術的影響。

在元組級不確定性模型下,我們描述了利用關聯數據庫系統的能力來識別和處理基於分數的排名中的數據不確定性的新處理技術。在屬性級不確定性模型下,我們描述了新的概率排名模型和一組查詢評估算法,包括基於抽樣的技術。我們還討論了支持不確定數據的排名連接查詢,並展示了如何擴展當前的排名連接方法以處理分數屬性中的不確定性。

目錄:引言 / 不確定性模型 / 查詢語義 / 方法論 / 不確定排名連接 / 結論