Algebraic Quantum Information Theory (Synthesis Lectures on Data Management)
暫譯: 代數量子資訊理論(數據管理綜合講座)
Keye Martin
- 出版商: Morgan & Claypool
- 出版日期: 2017-10-30
- 售價: $1,620
- 貴賓價: 9.5 折 $1,539
- 語言: 英文
- 頁數: 100
- 裝訂: Paperback
- ISBN: 1608453936
- ISBN-13: 9781608453931
-
相關分類:
量子 Quantum
海外代購書籍(需單獨結帳)
相關主題
商品描述
This lecture presents various aspects of uncertainty in schema matching within a single unified framework. We introduce basic formulations of uncertainty and provide several alternative representations of schema matching uncertainty. Then, we cover two common methods that have been proposed to deal with uncertainty in schema matching, namely ensembles and top-K matchings, and analyze them in this context. We conclude with a set of real-world applications. Schema matching is the task of providing correspondences between concepts describing the meaning of data in various heterogeneous, distributed data sources. Schema matching is one of the basic operations required by the process of data and schema integration, and thus has a great effect on its outcomes, whether these involve targeted content delivery, view integration, database integration, query rewriting over heterogeneous sources, duplicate data elimination, or automatic streamlining of workflow activities that involve heterogeneous data sources. Schema matching research has been going on for more than 25 years. Over the years, a significant body of work has been devoted to the identification of schema matchers, heuristics for schema matching. The main objective of schema matchers is to provide correspondences that will be effective from the user's point of view. Over the years, a realization has emerged that schema matchers are inherently uncertain. Since 2003, work on the uncertainty in schema matching has picked up, along with research on uncertainty in other areas of data management.
商品描述(中文翻譯)
這堂講座在一個統一的框架內介紹了模式匹配中的不確定性各個方面。我們介紹了不確定性的基本公式,並提供了幾種模式匹配不確定性的替代表示法。接著,我們涵蓋了兩種常見的方法,這些方法被提出來用以處理模式匹配中的不確定性,即集成方法(ensembles)和前K匹配(top-K matchings),並在此背景下進行分析。我們以一組真實世界的應用作結論。模式匹配是提供描述各種異構、分散數據來源中數據意義的概念之間對應關係的任務。模式匹配是數據和模式整合過程中所需的基本操作之一,因此對其結果有著重大影響,無論這些結果涉及目標內容交付、視圖整合、數據庫整合、在異構來源上進行查詢重寫、重複數據消除,或自動簡化涉及異構數據來源的工作流程活動。模式匹配研究已經進行了超過25年。多年來,已經有大量的工作致力於識別模式匹配器和模式匹配的啟發式方法。模式匹配器的主要目標是提供從用戶的角度來看有效的對應關係。隨著時間的推移,人們逐漸意識到模式匹配器本質上是具有不確定性的。自2003年以來,模式匹配中的不確定性研究有所增加,與其他數據管理領域中的不確定性研究一起發展。