Hamiltonian Monte Carlo Methods in Machine Learning

Marwala, Tshilidzi, Mbuvha, Rendani, Mongwe, Wilson Tsakane

  • 出版商: Academic Press
  • 出版日期: 2023-02-16
  • 售價: $6,380
  • 貴賓價: 9.5$6,061
  • 語言: 英文
  • 頁數: 220
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443190356
  • ISBN-13: 9780443190353
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Hamiltonian Monte Carlo Methods in Machine Learning introduces methods for optimal tuning of HMC parameters, along with an introduction of Shadow and Non-canonical HMC methods with improvements and speedup. Lastly, the authors address the critical issues of variance reduction for parameter estimates of numerous HMC based samplers. The book offers a comprehensive introduction to Hamiltonian Monte Carlo methods and provides a cutting-edge exposition of the current pathologies of HMC-based methods in both tuning, scaling and sampling complex real-world posteriors. These are mainly in the scaling of inference (e.g., Deep Neural Networks), tuning of performance-sensitive sampling parameters and high sample autocorrelation.

Other sections provide numerous solutions to potential pitfalls, presenting advanced HMC methods with applications in renewable energy, finance and image classification for biomedical applications. Readers will get acquainted with both HMC sampling theory and algorithm implementation.

商品描述(中文翻譯)

《機器學習中的哈密爾頓蒙特卡羅方法》介紹了最佳調整HMC參數的方法,並介紹了Shadow和非規範HMC方法,以改進和加速。最後,作者們討論了基於HMC的多個取樣器的參數估計方差降低的關鍵問題。本書全面介紹了哈密爾頓蒙特卡羅方法,並對當前HMC方法在調整、擴展和取樣複雜現實世界後驗分佈中的問題進行了尖端的闡述。這些問題主要涉及推理的擴展(例如深度神經網絡)、性能敏感取樣參數的調整和高樣本自相關性。

其他部分提供了許多潛在陷阱的解決方案,介紹了應用於可再生能源、金融和生物醫學圖像分類的高級HMC方法。讀者將熟悉HMC取樣理論和算法實現。