Sequential Analysis: Hypothesis Testing and Changepoint Detection
暫譯: 序列分析:假設檢定與變更點檢測

Tartakovsky, Alexander, Nikiforov, Igor, Basseville, Michele

  • 出版商: CRC
  • 出版日期: 2020-12-18
  • 售價: $2,290
  • 貴賓價: 9.5$2,176
  • 語言: 英文
  • 頁數: 603
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367740044
  • ISBN-13: 9780367740047
  • 相關分類: Data Science機率統計學 Probability-and-statistics
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently.

 

 

 

 

 

 

 

The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book primarily focuses on practical discrete-time models, with certain continuous-time models also examined when general results can be obtained very similarly in both cases. It treats both conventional i.i.d. and general non-i.i.d. stochastic models in detail, including Markov, hidden Markov, state-space, regression, and autoregression models. Rigorous proofs are given for the most important results.

 

 

 

 

 

 

 

 

 

Written by leading authorities in the field, this book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It explains how the theoretical aspects influence the hypothesis testing and changepoint detection problems as well as the design of algorithms.

 

 

商品描述(中文翻譯)

《序列分析:假設檢定與變更點檢測》系統性地發展了序列假設檢定和最快變更點檢測的理論。它還描述了可以有效利用理論結果的重要應用。

本書回顧了在決策理論(貝葉斯)和非決策理論(非貝葉斯)背景下,假設檢定和變更點檢測的最新成就。作者不僅強調傳統的二元假設,還涉及更為困難的多重決策問題。他們處理簡單假設的情境以及更現實的兩個和有限多個複合假設的案例。本書主要集中於實用的離散時間模型,當一般結果在兩種情況下都能非常相似地獲得時,也會檢視某些連續時間模型。它詳細處理了傳統的獨立同分佈(i.i.d.)和一般的非獨立同分佈(non-i.i.d.)隨機模型,包括馬可夫模型、隱馬可夫模型、狀態空間模型、回歸模型和自回歸模型。對於最重要的結果,提供了嚴謹的證明。

本書由該領域的領先權威撰寫,涵蓋了序列假設檢定和序列最快變更點檢測的理論發展及其在廣泛的工程和環境領域中的應用。它解釋了理論方面如何影響假設檢定和變更點檢測問題以及算法的設計。

作者簡介

Alexander Tartakovsky, Igor Nikiforov, Michele Basseville

作者簡介(中文翻譯)

亞歷山大·塔塔科夫斯基,伊戈爾·尼基福羅夫,米歇爾·巴斯維爾