Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video (Springer Theses)
暫譯: 視頻行為分析與異常檢測的機器學習方法(Springer 論文集)
Olga Isupova
- 出版商: Springer
- 出版日期: 2018-03-06
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 126
- 裝訂: Hardcover
- ISBN: 3319755072
- ISBN-13: 9783319755076
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes.
Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives.
The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure.In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed.
The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived.
The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.
商品描述(中文翻譯)
這篇論文提出了透過行為分析和在線異常檢測來理解場景的機器學習方法。該書介紹了新穎的貝葉斯主題模型,用於檢測與典型活動不同的事件,以及一個新穎的變更點檢測框架,用於識別突發的行為變化。
行為分析和異常檢測是智能視覺系統的關鍵組成部分。異常檢測可以從兩個角度來考慮:異常事件可以定義為違反典型活動的事件,或作為行為的突變。主題建模和變更點檢測方法分別用於實現這些目標。
論文首先開發了動態主題模型的學習算法,該模型提取代表場景典型活動的主題。這些典型活動用於異常檢測決策中的正常性度量。該書還提出了一種新穎的異常定位程序。
在首次呈現的主題模型中,應提前指定若干主題。然後開發了一種新穎的動態非參數層次狄利克雷過程主題模型,其中主題數量是從數據中確定的。開發了批量和在線推斷算法。
論文的後半部分考慮了在變更點檢測方法論中的行為分析和異常檢測。引入了一個新穎的變更點檢測通用框架。考慮了高斯過程時間序列數據。提出了針對離線和在線數據處理的統計假設檢驗,並提出了多重變更點檢測,推導了檢驗的理論性質。
該論文附帶了可供研究人員和工程師使用的開源工具箱。