-
出版商:
Springer
-
出版日期:
2024-11-02
-
售價:
$8,810
-
貴賓價:
9.5 折
$8,370
-
語言:
英文
-
頁數:
768
-
裝訂:
Quality Paper - also called trade paper
-
ISBN:
9819938163
-
ISBN-13:
9789819938162
-
相關分類:
Machine Learning
商品描述
This book, written by leading international researchers of evolutionary approaches to machine learning, explores various ways evolution can address machine learning problems and improve current methods of machine learning. Topics in this book are organized into five parts. The first part introduces some fundamental concepts and overviews of evolutionary approaches to the three different classes of learning employed in machine learning. The second addresses the use of evolutionary computation as a machine learning technique describing methodologic improvements for evolutionary clustering, classification, regression, and ensemble learning. The third part explores the connection between evolution and neural networks, in particular the connection to deep learning, generative and adversarial models as well as the exciting potential of evolution with large language models. The fourth part focuses on the use of evolutionary computation for supporting machine learning methods. This includes methodological developments for evolutionary data preparation, model parametrization, design, and validation. The final part covers several chapters on applications in medicine, robotics, science, finance, and other disciplines. Readers find reviews of application areas and can discover large-scale, real-world applications of evolutionary machine learning to a variety of problem domains. This book will serve as an essential reference for researchers, postgraduate students, practitioners in industry and all those interested in evolutionary approaches to machine learning.
商品描述(中文翻譯)
本書由國際領先的進化方法機器學習研究者撰寫,探討進化如何解決機器學習問題並改善當前的機器學習方法。本書的主題分為五個部分。第一部分介紹了一些基本概念以及進化方法在機器學習中所採用的三種不同學習類別的概述。第二部分探討了將進化計算作為機器學習技術的應用,描述了進化聚類、分類、回歸和集成學習的方法學改進。第三部分探討了進化與神經網絡之間的聯繫,特別是與深度學習、生成對抗模型的關聯,以及進化在大型語言模型中的令人興奮的潛力。第四部分專注於使用進化計算來支持機器學習方法,包括進化數據準備、模型參數化、設計和驗證的方法學發展。最後一部分涵蓋了幾個關於醫學、機器人技術、科學、金融及其他學科應用的章節。讀者可以找到應用領域的回顧,並發現進化機器學習在各種問題領域中的大規模、現實世界應用。本書將成為研究人員、研究生、業界從業者以及所有對進化方法機器學習感興趣的人的重要參考資料。
作者簡介
Wolfgang Banzhaf is a professor in the Department of Computer Science and Engineering at Michigan State University. He is the John R. Koza Endowed Chair in Genetic Programming and a member of the BEACON Center for the Study of Evolution in Action. His research interests include evolutionary computation and complex adaptive systems. Studies of self-organization and the field of Artificial Life are also of very much interest to him. Penousal Machado is an associate professor in the Department of Informatics at the University of Coimbra in Portugal, the coordinator of the Cognitive and Media Systems group of the Centre for Informatics and Systems of the University of Coimbra (CISUC), and the scientific director of the Computational Design and Visualization Lab of CISUC. His research interests include evolutionary computation, computational creativity, artificial intelligence, and information visualization. Mengjie Zhang is a Professor of Computer Science, Head of the Evolutionary Computation and machine learning Research Group, and Director of Data Science and Artificial Intelligence, Victoria University of Wellington, New Zealand. His current research interests include artificial intelligence and machine learning, particularly genetic programming, image analysis, feature selection and reduction, job shop scheduling, and transfer learning.
作者簡介(中文翻譯)
沃爾夫岡·班茲哈夫是密西根州立大學計算機科學與工程系的教授。他是約翰·R·科薩(John R. Koza)基因程式設計(Genetic Programming)講座的教授,也是BEACON進化研究中心的成員。他的研究興趣包括進化計算和複雜適應系統。他對自我組織的研究以及人工生命(Artificial Life)領域也非常感興趣。佩諾薩爾·馬查多是葡萄牙科英布拉大學資訊學系的副教授,科英布拉大學資訊與系統中心(CISUC)認知與媒體系統小組的協調員,以及CISUC計算設計與視覺化實驗室的科學主任。他的研究興趣包括進化計算、計算創造力、人工智慧和資訊視覺化。孟杰·張是新西蘭威靈頓維多利亞大學的計算機科學教授,進化計算與機器學習研究小組的負責人,以及數據科學與人工智慧的主任。他目前的研究興趣包括人工智慧和機器學習,特別是基因程式設計、影像分析、特徵選擇與降維、作業排程以及轉移學習。