相關主題
商品描述
This book provides a comprehensive coverage of the state-of-the-art artificial intelligence (AI) technologies in vision-based structural health monitoring (SHM). In this data explosion epoch, AI-aided SHM and rapid damage assessment after natural hazards have become of great interest in civil and structural engineering, where using machine and deep learning in vision-based SHM brings new research direction. As researchers begin to apply these concepts to the structural engineering domain, especially in SHM, several critical scientific questions need to be addressed: (1) What can AI solve for the SHM problems? (2) What are the relevant AI technologies? (3) What is the effectiveness of the AI approaches in vision-based SHM? (4) How to improve the adaptability of the AI approaches for practical projects? (5) How to build a resilient AI-aided disaster prevention system making use of the vision-based SHM?
This book introduces and implements the state-of-the-art machine learning and deep learning technologies for vision-based SHM applications. Specifically, corresponding to the above-mentioned scientific questions, it consists of: (1) motivation, background & progress of AI-aided vision-based SHM, (2) fundamentals of machine learning & deep learning approaches, (3) basic AI applications in vision-based SHM, (4) advanced topics & approaches, and (5) resilient AI-aided applications. In the introduction, a brief coverage about the development progress of AI technologies in the vision-based area is presented. It gives the readers the motivations and background of the relevant research. In Part I, basic knowledges of machine and deep learning are introduced, which provide the foundation for the readers irrespective of their background. In Part II, to verify the effectiveness of the AI methods, the key procedure of the typical AI-aided SHM applications (classification, localization, and segmentation) is explored, including vision data collection, data pre-processing, transfer learning-based training mechanism, evaluation, and analysis. In Part III, advanced AI topics, e.g., generative adversarial network, semi-supervised learning, and active learning, are discussed. They aim to address several critical issues in practical projects, e.g., the lack of well-labeled data and imbalanced labels, to improve the adaptability of the AI models. In Part IV, the new concept of "resilient AI" is introduced to establish an intelligent disaster prevention system, multi-modality learning, multi-task learning, and interpretable AI technologies. These advances are aimed towards increasing the robustness and explainability of the AI-enabled SHM system, and ultimately leading to improved resiliency.
The scope covered in this book is not only beneficial for education purposes but also is essential for modern industrial applications. The target audience is broad and includes students, engineers, and researchers in civil engineering, statistics, and computer science.
Unique Book Features:
- Provide a comprehensive review of the rapidly expanding field of vision-based structural health monitoring (SHM) using artificial intelligence approaches.
- Re-organize fundamental knowledge specific to the machine and deep learning in vision tasks.
- Include comprehensive details about the procedure of conducting AI approaches for vision-based SHM along with examples and exercises.
- Cover a vast array of special topics and advanced AI-enabled vision-based SHM applications.
- List a few potential extensions for inspiring the readers for future investigation.
商品描述(中文翻譯)
本書全面介紹了基於視覺的結構健康監測(SHM)中最先進的人工智慧(AI)技術。在這個數據爆炸的時代,AI輔助的SHM和自然災害後的快速損害評估在土木和結構工程領域引起了極大的關注,利用機器學習和深度學習於基於視覺的SHM帶來了新的研究方向。隨著研究人員開始將這些概念應用於結構工程領域,特別是在SHM中,幾個關鍵的科學問題需要解決:(1)AI能解決SHM問題什麼?(2)相關的AI技術有哪些?(3)AI方法在基於視覺的SHM中的有效性如何?(4)如何提高AI方法在實際項目中的適應性?(5)如何建立一個利用基於視覺的SHM的韌性AI輔助災害預防系統?
本書介紹並實施了最先進的機器學習和深度學習技術於基於視覺的SHM應用中。具體而言,針對上述科學問題,本書包括:(1)AI輔助基於視覺的SHM的動機、背景與進展,(2)機器學習與深度學習方法的基本原理,(3)基於視覺的SHM中的基本AI應用,(4)進階主題與方法,以及(5)韌性AI輔助應用。在引言中,簡要介紹了AI技術在基於視覺領域的發展進展,為讀者提供了相關研究的動機和背景。在第一部分中,介紹了機器學習和深度學習的基本知識,為讀者提供了基礎,無論其背景如何。在第二部分中,為了驗證AI方法的有效性,探討了典型AI輔助SHM應用的關鍵程序(分類、定位和分割),包括視覺數據收集、數據預處理、基於轉移學習的訓練機制、評估和分析。在第三部分中,討論了進階AI主題,例如生成對抗網絡、半監督學習和主動學習,旨在解決實際項目中的幾個關鍵問題,例如缺乏良好標記數據和標籤不平衡,以提高AI模型的適應性。在第四部分中,介紹了“韌性AI”的新概念,以建立智能災害預防系統、多模態學習、多任務學習和可解釋的AI技術。這些進展旨在提高AI輔助SHM系統的穩健性和可解釋性,最終提高韌性。
本書所涵蓋的範疇不僅對教育目的有益,對現代工業應用也至關重要。目標讀者範圍廣泛,包括土木工程、統計學和計算機科學的學生、工程師和研究人員。
獨特的書籍特色:
- 提供對快速擴展的基於視覺的結構健康監測(SHM)領域使用人工智慧方法的全面回顧。
- 重新組織與基於視覺任務的機器學習和深度學習相關的基本知識。
- 包含有關進行基於視覺的SHM的AI方法程序的詳細信息,並附有示例和練習。
- 涵蓋各種特殊主題和進階的AI輔助基於視覺的SHM應用。
- 列出幾個潛在的擴展,以激發讀者進行未來的研究。
作者簡介
Gao obtained his BS from Tongji University and his MS and PhD from University of California, Berkeley in Civil and Environmental Engineering under the supervision of the first author, Prof. K.M. Mosalam. In August 2023, he joined the College of Civil Engineering at Tongji University as an Associate Professor. He is the recipient of 2021 Hojjat Adeli Award for Innovation in Computing and 2022 Engineering Structures Best Paper Award.
作者簡介(中文翻譯)
Mosalam 於開羅大學獲得學士和碩士學位,並在康奈爾大學獲得結構工程博士學位。1997年,他加入加州大學伯克利分校土木與環境工程系,目前擔任太平洋建設教授、PEER中心主任以及StEER網絡的地震危害副主任。他的研究專注於結構的性能和健康監測,包括使用機器學習和深度學習方法進行基於振動和視覺的數據分析技術。他積極參與重要設施的評估和修復,以及與建築能源效率和可持續性相關的研究。他的研究涵蓋大規模計算和實驗,包括混合模擬。他是2006年ASCE Huber土木工程研究獎、2013年加州大學伯克利分校校長公共服務獎、2015年EERI傑出論文獎、2020年ASCE材料與結構反應最佳期刊論文獎,以及2021年Hojjat Adeli計算創新獎的獲得者。他是墨西哥工程學院的通訊會員,並且是ASCE的當選院士。他曾擔任日本京都大學、土耳其中東技術大學和新加坡南洋理工大學的訪問教授。Mosalam教授教授與有限元素法(FEM)、結構分析、結構動力學、鋼筋和預應力混凝土結構的設計與行為,以及結構工程中的實驗方法相關的課程。
Gao 於同濟大學獲得學士學位,並在加州大學伯克利分校獲得碩士和博士學位,專攻土木與環境工程,指導教授為第一作者K.M. Mosalam教授。2023年8月,他加入同濟大學土木工程學院,擔任副教授。他是2021年Hojjat Adeli計算創新獎和2022年工程結構最佳論文獎的獲得者。