Meta-Learning: Theory, Algorithms and Applications
暫譯: 元學習:理論、演算法與應用
Zou, Lan
- 出版商: Academic Press
- 出版日期: 2022-11-08
- 售價: $4,160
- 貴賓價: 9.5 折 $3,952
- 語言: 英文
- 頁數: 402
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0323899315
- ISBN-13: 9780323899314
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
商品描述
Surpassing contemporary machine learning and data mining, deep neural networks (DNNs) as heavy algorithm-based technologies provide solid possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve.
Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm.
The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. The book concludes with an epilogue looking at future trends.
Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn of state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications.
商品描述(中文翻譯)
超越當代機器學習和資料挖掘,深度神經網絡(DNN)作為基於重算法的技術,為人工通用智能(AGI)提供了堅實的可能性。使用DNN的元學習使AGI更近一步:人工代理解決人類能夠完成的智能任務,甚至超越他們所能達成的。
《元學習:理論、算法與應用》通過回答以下問題來解釋元學習的基本原理:什麼是元學習?我們為什麼需要元學習?我們如何在特定場景中使用元學習?本書介紹了七種主流範式的背景:元學習、少樣本學習、深度學習、遷移學習、機器學習、概率建模和貝葉斯推斷。接著解釋了元學習的重要先進機制及其變體,包括記憶增強神經網絡、元網絡、卷積Siamese神經網絡、匹配網絡、原型網絡、關係網絡、LSTM元學習、模型無關元學習和Reptile算法。
本書深入探討了來自頂級會議(例如NeurIPS、ICML、CVPR、ACL、ICLR、KDD)近200種最先進的元學習算法。它系統地調查了來自11個真實應用領域的39類任務:計算機視覺、自然語言處理、元強化學習、醫療保健、金融與經濟、建材、圖形神經網絡、程式合成、智慧城市、推薦系統和氣候科學。本書以一篇展望未來趨勢的後記作結。
《元學習:理論、算法與應用》是理解元學習原則和學習最先進的元學習算法的極佳資源,使學生、研究人員和業界專業人士能夠將元學習應用於各種新穎的應用中。