The Theory of Zeta-Functions of Root Systems

Komori, Yasushi, Matsumoto, Kohji, Tsumura, Hirofumi

  • 出版商: Springer
  • 出版日期: 2024-01-03
  • 售價: $5,530
  • 貴賓價: 9.5$5,254
  • 語言: 英文
  • 頁數: 414
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9819909090
  • ISBN-13: 9789819909094
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The contents of this book was created by the authors as a simultaneous generalization of Witten zeta-functions, Mordell-Tornheim multiple zeta-functions, and Euler-Zagier multiple zeta-functions. Zeta-functions of root systems are defined by certain multiple series, given in terms of root systems. Therefore, they intrinsically have the action of associated Weyl groups.
The exposition begins with a brief introduction to the theory of Lie algebras and root systems and then provides the definition of zeta-functions of root systems, explicit examples associated with various simple Lie algebras, meromorphic continuation and recursive analytic structure described by Dynkin diagrams, special values at integer points, functional relations, and the background given by the action of Weyl groups. In particular, an explicit form of Witten's volume formula is provided. It is shown that various relations among special values of Euler-Zagier multiple zeta-functions-which usually are called multiple zeta values (MZVs) and are quite important in connection with Zagier's conjecture-are just special cases of various functional relations among zeta-functions of root systems. The authors further provide other applications to the theory of MZVs and also introduce generalizations with Dirichlet characters, and with certain congruence conditions. The book concludes with a brief description of other relevant topics.

商品描述(中文翻譯)

本書的內容是由作者們同時概括了Witten zeta函數、Mordell-Tornheim多重zeta函數和Euler-Zagier多重zeta函數。根系的zeta函數是通過某些多重級數定義的,這些級數是用根系表示的。因此,它們本質上具有相關的Weyl群作用。

本書首先簡要介紹了李代數和根系理論,然後提供了根系zeta函數的定義,以及與各種簡單李代數相關聯的具體例子,動態圖描述的亞純解析延拓和遞歸解析結構,整數點的特殊值,函數關係,以及Weyl群作用所提供的背景。特別地,提供了Witten體積公式的具體形式。顯示了Euler-Zagier多重zeta函數的特殊值之間的各種關係-通常被稱為多重zeta值(MZVs),在與Zagier的猜想相關的問題中非常重要-只是根系zeta函數之間的各種函數關係的特殊情況。作者進一步提供了對MZV理論的其他應用,並引入了具有Dirichlet字符和特定合同條件的概括。本書以對其他相關主題的簡要描述作為結尾。