Normal Surface Singularities
暫譯: 正常表面奇異點
Némethi, András
- 出版商: Springer
- 出版日期: 2022-10-08
- 售價: $2,630
- 貴賓價: 9.5 折 $2,499
- 語言: 英文
- 頁數: 646
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031067525
- ISBN-13: 9783031067525
-
相關分類:
物理學 Physics
海外代購書籍(需單獨結帳)
商品描述
This monograph provides a comprehensive introduction to the theory of complex normal surface singularities, with a special emphasis on connections to low-dimensional topology. In this way, it unites the analytic approach with the more recent topological one, combining their tools and methods.
In the first chapters, the book sets out the foundations of the theory of normal surface singularities. This includes a comprehensive presentation of the properties of the link (as an oriented 3-manifold) and of the invariants associated with a resolution, combined with the structure and special properties of the line bundles defined on a resolution. A recurring theme is the comparison of analytic and topological invariants. For example, the Poincaré series of the divisorial filtration is compared to a topological zeta function associated with the resolution graph, and the sheaf cohomologies of the line bundles are compared to the Seiberg-Witten invariants of the link. Equivariant Ehrhart theory is introduced to establish surgery-additivity formulae of these invariants, as well as for the regularization procedures of multivariable series.
In addition to recent research, the book also provides expositions of more classical subjects such as the classification of plane and cuspidal curves, Milnor fibrations and smoothing invariants, the local divisor class group, and the Hilbert-Samuel function. It contains a large number of examples of key families of germs: rational, elliptic, weighted homogeneous, superisolated and splice-quotient. It provides concrete computations of the topological invariants of their links (Casson(-Walker) and Seiberg-Witten invariants, Turaev torsion) and of the analytic invariants (geometric genus, Hilbert function of the divisorial filtration, and the analytic semigroup associated with the resolution). The book culminates in a discussion of the topological and analytic lattice cohomologies (as categorifications of the Seiberg-Witten invariant and of the geometric genus respectively) and of the graded roots. Several open problems and conjectures are also formulated.
Normal Surface Singularities provides researchers in algebraic and differential geometry, singularity theory, complex analysis, and low-dimensional topology with an invaluable reference on this rich topic, offering a unified presentation of the major results and approaches.
商品描述(中文翻譯)
這本專著提供了對複數正常表面奇異點理論的全面介紹,特別強調與低維拓撲的聯繫。這樣,它將解析方法與較新的拓撲方法結合起來,融合了它們的工具和方法。
在前幾章中,本書奠定了正常表面奇異點理論的基礎。這包括對鏈結(作為有向三維流形)的性質以及與解析解相關的不變量的全面介紹,並結合了在解析解上定義的線束的結構和特殊性質。一個反覆出現的主題是解析不變量和拓撲不變量的比較。例如,分割濾波的 Poincaré 系列與與解析解圖相關的拓撲 ζ 函數進行比較,線束的層上同調與鏈結的 Seiberg-Witten 不變量進行比較。引入了等變 Ehrhart 理論,以建立這些不變量的手術可加性公式,以及多變數級數的正則化程序。
除了近期的研究外,本書還提供了更經典主題的闡述,例如平面和尖點曲線的分類、Milnor 纖維化和平滑不變量、局部除數類群以及 Hilbert-Samuel 函數。它包含了大量關鍵類型的細菌的例子:有理的、橢圓的、加權齊次的、超孤立的和拼接商的。它提供了這些鏈結的拓撲不變量(Casson(-Walker) 和 Seiberg-Witten 不變量、Turaev 扭轉)和解析不變量(幾何 genus、分割濾波的 Hilbert 函數,以及與解析解相關的解析半群)的具體計算。本書的高潮是對拓撲和解析格上同調(分別作為 Seiberg-Witten 不變量和幾何 genus 的類別化)以及分級根的討論。還提出了幾個未解的問題和猜想。
正常表面奇異點 為代數和微分幾何、奇異性理論、複分析和低維拓撲的研究者提供了這一豐富主題的寶貴參考,提供了主要結果和方法的統一呈現。
作者簡介
András Némethi studied algebraic geometry with Lucian Badescu at Bucharest and then spent 14 years at Ohio State University. He now works at the Alfréd Rényi Institute of Mathematics and at the Eötvös Loránd University in Budapest. A leading researcher in the theory of complex singularities and their connections with low-dimensional topology, he co-authored the book Milnor Fiber Boundary of a Non-Isolated Surface Singularity, and has authored some 130 research articles, many of them with various collaborators. His honors include an invited address to the International Congress of Mathematicians in 2018. He has built new bridges between analytic and topological invariants (for instance, between the geometric genus and the Seiberg-Witten invariant of the link), proved and formulated several conjectures, and introduced new mathematical objects, such as (topological and analytic) lattice cohomologies and graded roots.
作者簡介(中文翻譯)
安德拉斯·內梅提(András Némethi)在布加勒斯特與盧西安·巴德斯庫(Lucian Badescu)學習代數幾何,隨後在俄亥俄州立大學工作了14年。他目前在布達佩斯的阿爾弗雷德·雷尼數學研究所(Alfréd Rényi Institute of Mathematics)和厄爾特大學(Eötvös Loránd University)任職。作為複雜奇異性理論及其與低維拓撲之間聯繫的領先研究者,他共同撰寫了書籍《非孤立曲面奇異性的米爾諾纖維邊界》(Milnor Fiber Boundary of a Non-Isolated Surface Singularity),並發表了約130篇研究文章,許多文章是與不同的合作者共同完成的。他的榮譽包括在2018年受邀於國際數學家大會發表演講。他在解析不變量和拓撲不變量之間建立了新的橋樑(例如,幾何 genus 與鏈的 Seiberg-Witten 不變量之間),證明並提出了幾個猜想,並引入了新的數學對象,如(拓撲和解析)格子同調和分級根。