D-Finite Functions
暫譯: D-有限函數
Kauers, Manuel
- 出版商: Springer
- 出版日期: 2024-11-09
- 售價: $3,050
- 貴賓價: 9.5 折 $2,898
- 語言: 英文
- 頁數: 664
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031346548
- ISBN-13: 9783031346545
海外代購書籍(需單獨結帳)
相關主題
商品描述
Defined as solutions of linear differential or difference equations with polynomial coefficients, D-finite functions play an important role in various areas of mathematics. This book is a comprehensive introduction to the theory of these functions with a special emphasis on computer algebra algorithms for computing with them: algorithms for detecting relations from given data, for evaluating D-finite functions, for executing closure properties, for obtaining various kinds of "explicit" expressions, for factoring operators, and for definite and indefinite symbolic summation and integration are explained in detail.
The book comes "with batteries included" in the sense that it requires no background in computer algebra as the relevant facts from this area are summarized in the beginning. This makes the book accessible to a wide range of readers, from mathematics students who plan to work themselves on D-finite functions to researchers who want to apply the theory to their own work. Hundreds of exercises invite the reader to apply the techniques in the book and explore further aspects of the theory on their own. Solutions to all exercises are given in the appendix.
When algorithms for D-finite functions came up in the early 1990s, computer proofs were met with a certain skepticism. Fortunately, these times are over and computer algebra has become a standard tool for many mathematicians. Yet, this powerful machinery is still not as widely known as it deserves. This book helps to spread the word that certain tasks can be safely delegated to a computer algebra system, and also what the limitations of these techniques are.
商品描述(中文翻譯)
定義為具有多項式係數的線性微分或差分方程的解,D-有限函數在數學的各個領域中扮演著重要角色。本書是對這些函數理論的全面介紹,特別強調計算機代數算法的應用:詳細解釋了從給定數據中檢測關係的算法、評估D-有限函數的算法、執行閉包性質的算法、獲得各種“顯式”表達式的算法、因式分解運算子的算法,以及確定性和不確定性符號求和和積分的算法。
本書“附帶電池”,因為它不需要計算機代數的背景知識,相關的事實在開頭已經總結。這使得本書對於廣泛的讀者群體都很容易接觸,從計劃自己研究D-有限函數的數學學生到希望將理論應用於自己工作的研究人員。數百個練習題邀請讀者應用書中的技術,並自行探索理論的其他方面。所有練習題的解答都在附錄中提供。
當D-有限函數的算法在1990年代初出現時,計算機證明受到了一定的懷疑。幸運的是,這些時代已經結束,計算機代數已成為許多數學家的標準工具。然而,這種強大的機器仍然沒有得到應有的廣泛認識。本書有助於傳播某些任務可以安全地委派給計算機代數系統的消息,以及這些技術的局限性。
作者簡介
Manuel Kauers studied computer science in Karlsruhe, Germany, from 1998 to 2002 and then went to Linz, Austria, where he received his Ph.D. in symbolic computation in 2005. He won a START prize in 2009. Since 2015 he is director of the Institute for Algebra at Johannes Kepler University in Linz. Kauers is an active member of the computer algebra community and has been contributing to the design, implementation, and application of algorithms for D-finite functions for many years. Together with Christoph Koutschan and Doron Zeilberger, he proved two outstanding conjectures in enumerative combinatorics using such algorithms. For one of these results, the proof of the qTSPP-conjecture, they received the AMS David P. Robbins prize in 2016.
作者簡介(中文翻譯)
曼努埃爾·考爾斯於1998年至2002年在德國卡爾斯魯厄學習計算機科學,隨後前往奧地利林茲,於2005年獲得符號計算的博士學位。他在2009年獲得了START獎。自2015年以來,他擔任林茲約翰·開普勒大學代數研究所所長。考爾斯是計算代數社群的活躍成員,多年來一直致力於D-有限函數的算法設計、實現和應用。與克里斯托夫·庫特尚和多倫·齊爾伯格一起,他利用這些算法證明了枚舉組合學中的兩個傑出猜想。對於其中一個結果,即qTSPP猜想的證明,他們於2016年獲得了美國數學學會大衛·P·羅賓斯獎。