Selected Asymptotic Methods with Applications to Electromagnetics and Antennas (Synthesis Lectures on Computational Electromagnetics)
暫譯: 選擇性漸近方法及其在電磁學與天線中的應用(計算電磁學綜合講座)

George Fikioris, Ioannis Tastsoglou, Odysseas N. Bakas

買這商品的人也買了...

商品描述

This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.

Throughout, we provide illustrative examples. Some of them are applications to special functions of mathematical physics. Others, taken from our published research, include the application of elementary methods to develop certain simple formulas for transmission lines, examples illustrating the difficulties in solving fundamental integral equations of antenna theory, an examination of the fundamentals of the Method of Auxiliary Sources (MAS), and a study of the near fields of certain unusual types of radiators.

Table of Contents: Preface / Introduction: Simple Asymptotic Approximations / Asymptotic Approximations Defined / Concepts from Complex Variables / Laplace's Method and Watson's Lemma / Integration by Parts and Asymptotics of Some Fourier Transforms / Poisson Summation Formula and Applications / Mellin-Transform Method for Asymptotic Evaluation of Integrals / More Applications to Wire Antennas / Authors' Biographies / Index

商品描述(中文翻譯)

這本書描述並說明了幾種在作者的電磁學和天線研究中證明有用的漸近方法。我們首先定義漸近近似和展開,並詳細解釋這些概念。接著,我們發展一些來自複分析的先決條件,例如冪級數、多值函數(包括分支點和分支切割的概念),以及非常重要的伽瑪函數。特別重要的是單一複變數函數的解析延續(analytic continuation)的概念;我們在這裡的討論包括一些最近對天線和計算電磁學的直接應用。然後,我們討論了具體的方法,包括分部積分和黎曼-勒貝格引理、與其他方法結合使用的輪廓積分、與拉普拉斯方法和沃森引理相關的技術、某些傅立葉正弦和餘弦變換的漸近行為,以及波松求和公式(包括其有限和的版本)。在文獻中,基於梅林變換的漸近技術往往未被充分利用;我們對這一主題的處理補充了我們最近在合成講座中提出的對積分的精確(而非漸近)評估技術。

在整個過程中,我們提供了說明性的例子。其中一些是數學物理中特殊函數的應用。其他例子來自我們已發表的研究,包括應用基本方法來發展某些簡單的傳輸線公式、說明解決天線理論基本積分方程困難的例子、對輔助源方法(Method of Auxiliary Sources, MAS)基本原理的檢視,以及對某些不尋常類型輻射器的近場研究。

目錄:前言 / 介紹:簡單的漸近近似 / 漸近近似的定義 / 複變數的概念 / 拉普拉斯方法和沃森引理 / 分部積分和某些傅立葉變換的漸近性 / 波松求和公式及其應用 / 梅林變換法在積分漸近評估中的應用 / 更多對導線天線的應用 / 作者簡介 / 索引