Fundamentals of Engineering Electromagnetics (Paperback)
暫譯: 工程電磁學基礎 (平裝本)

Sunil Bhooshan

  • 出版商: Oxford University
  • 出版日期: 2012-09-03
  • 售價: $840
  • 貴賓價: 9.8$823
  • 語言: 英文
  • 頁數: 688
  • 裝訂: Paperback
  • ISBN: 0198077947
  • ISBN-13: 9780198077947
  • 相關分類: 電磁學 Electromagnetics
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

商品描述

* Comprehensive coverage of topics; also covers antennas and radio wave propagation
* Packed with numerous solved examples review questions, numerical problems, short answer type questions, MCQs, and open book exam questions
* Provides a detailed recapitulation of important formulae and definition to aid in quick revision
* Includes a 'Did You Know' section in the chapters to cover additional interesting information beyond the syllabus
* Includes in separate boxes real-life application of concepts wherever possible
* Includes a CD with chapter-wise MATLAB programs and illustrations from the chapters

Beginning with the very basics such as scalars and vectors, coordinate systems, and vector calculus, the book aims to teach the subject starting from the fundamentals in a simple and direct manner. After the introductory part, the content is divided into three logical parts, namely, electrostatics, magnetostatics, and time varying fields, radiation and propagation. The text has been supported throughout with self-explanatory illustrations and numerous graded solved examples. Many of the illustrations also provide a three-dimensional view of the patterns presented.

With an aim to provide sufficient practice to students and reinforce important concepts, the end chapter exercises include review questions, numerical problems with answers, short answers questions with answers, MCQs with answers and open book exam questions as well with hints. The appendices at the end of the book equip the students with all the important tables and information they would require for this course.

Table Of Contents

Frequently Used Reference Material
0.1. Table of Fundamental Constants
0.2. Units
0.3. The Greek Alphabet
0.4. SI Prefixes
0.5. Dielectric Constants of Materials
0.6. Relative Permeabilities of Materials
I. Introductory Material
1. Scalars and Vectors
1.1. Introduction
1.2. Scalars
1.2.1. Rules to Manipulate Scalars
1.2.2. Keeping Track of Calculations
1.2.3. Order of Magnitude of Calculations
1.2.4. Approximations
1.3. Vectors
1.3.1. The Unit Vector
1.3.2. Vector Addition
1.3.2.1. A Handy Technique
1.3.2.2. Calculations with Vector Addition
1.3.3. Dot Product or Scalar Product
1.3.3.1. Work and Scalar Product
1.3.3.2. Scalar Products of Orthogonal Unit Vectors
1.3.4. Cross Product or Vector Product
1.3.4.1. Cross Products of Orthogonal Unit Vectors
1.3.4.2. Cross Product in Rectangular Coordinates
1.3.4.3. Memorizing Cross-Product Calculations
1.3.4.4. Scalar Triple Product
1.4. Units and Dimensions
1.5. Points to Remember
1.6. Practice Problems and Self Assessment
2. Coordinate Systems and Fields
2.1. Introduction
2.2. Scalar and Vector Fields
2.2.1. Scalar Fields
2.2.2. Vector Fields
2.3. The Rectangular Coordinate System
2.3.1. Distance Between Two Points
2.3.2. Direction Cosines
2.3.3. Vector Equation of a Straight Line
2.3.4. Equation of a Plane
2.4. Cylindrical Coordinate System
2.4.1. Equations of Surfaces and Lines in Cylindrical Coordinates
2.5. The Spherical Coordinate System
2.6. Points to Remember
2.7. Practice Problems and Self Assessment
3. Vector Calculus 143
3.1. Chapter Goals
3.2. Basic 3-Dimensional Calculus
3.2.1. Differential Element of a Line
3.2.2. Line Integral
3.2.3. Differential Element of a Surface
3.2.4. Surface Integral
3.2.5. The Volume Integral
3.3. Differential Calculus Concepts
3.3.1. The Del or Nabla Operator
3.3.2. Gradient
3.3.3. The Curl
3.3.4. Divergence
3.4. Maxwell's Equations
3.5. Units and Dimensions of EM Fields
3.6. List of Formulae
3.7. Practice Problems and Self Assessment
II. Electrostatics
4. The Electric Field and Gauss's Law
4.1. Chapter Goals
4.2. Electrostatics: An Introduction
4.3. Charge
4.3.1. The Dirac Delta Function
4.4. Coulomb's Law and the Electric Field
4.5. The Electric Field due to a System of Point Charges
4.5.1. Electric Dipole
4.5.2. Electric Field Due to Any Number of Point Charges
4.6. Electric Field due to Continuous Charge Distributions
4.6.1. Infinite Line Charge
4.6.2. Infinite Sheet Charge
4.7. Electric Displacement ? and Flux Density D
4.8. Gauss's Law
4.9. Gauss's LawApplied to Cases of Spherical Symmetry
4.9.1. Gauss's Law Applied to a Point Charge
4.9.2. Gauss's Law Applied to a Charged Sphere
4.10. Gauss's Law Applied to Cases of Cylindrical Symmetry
4.11. Gauss's LawApplied to Cases of Rectangular Symmetry
4.12. List of Formulae
4.13. Practice problems and Self Assessment
5. Energy and Potential
5.1. Chapter Goals
5.2. Potential Due to a Point Charge
5.3. Equipotential Surfaces
5.4. Potential Energy
5.5. Potential Due to a System of Point Charges
5.5.1. Far Fields for an Electric Dipole
5.6. Potential Due Any Continuous Charge Distribution
5.7. List of Formulae
5.8. Practice Problems and Self Assessment
6. The Electric Field and Material Media
6.1. Chapter Goals
6.2. Current and Current Density
6.3. Continuity Equation
6.4. Conductors, Semiconductors and Dielectrics
6.4.1. Conductors and Resistance
6.4.2. Relaxation Time for Conductors
6.4.3. The Method of Images
6.4.4. Semiconductors
6.4.5. Dielectrics
6.5. Capacitance
6.5.1. Parallel Plate Capacitor
6.5.2. Coaxial Line
6.5.3. Two Conductor Line
6.6. Relation Between Capacitance and Resistance
6.7. Boundary Conditions for Electrostatic Fields
6.8. Energy Stored in the Electric Field
6.9. List of Formulae
6.10. Practice Problems and Self Assessment
7. Laplace's and Poisson's Equations
7.1. Chapter Goals
7.2. Introduction
7.3. Uniqueness Theorem
7.4. Laplace's Equation
7.4.1. Some One Dimensional Solutions
7.4.1.1. Laplace's Equation, Applied to Infinite Parallel Planes
7.4.1.2. Laplace'sEquation,AppliedtoConcentric Cylinders
7.4.1.3. Laplace'sEquation,AppliedtoConcentric Spheres
7.4.1.4. Laplace'sEquationAppliedtoTwo Coaxial Cones
7.4.2. TwoDimensional Solutions toLaplace'sEquation
7.4.2.1. Analytic Functions
7.4.3. Separation of Variables
7.4.4. Numerical Techniques
7.5. Poisson's Equation
7.5.1. One Dimensional Solutions
7.6. List of Formulae
7.7. Practice Problems and Self Assessment
III. Magnetostatics
8. The Steady Magnetic Field
8.1. Chapter Goals
8.2. Introduction
8.3. The Biot-Savart Law
8.3.1. Biot-Savart Law Applied to a Tiny Filamentary Current
8.4. Types of Current
8.4.1. Biot-SavartLawAppliedto an InfinitelyLong Straight Wire
8.4.2. Magnetic Field Lines of a Long Straight Wire
8.4.3. Biot-Savart Law Applied to a Short Straight Wire
8.5. Ampere's Law
8.5.1. Ampere's Law Applied to a Long Straight Wire
8.5.2. Ampere's Law Applied to a Wire of Radius a
8.5.3. Ampere's Law Applied to an Infinite Solenoid
8.5.4. Ampere's Law Applied to a Winding Around a Torus
8.6. The Magnetic Field-Some Calculations
8.6.1. Loop of Wire Carrying a Current
8.6.2. Magnetic Field Due to a Current Sheet
8.6.3. Magnetic Field in the Interior of an Infinite Solenoid
8.6.4. Magnetic Field in the Interior of a Finite Solenoid
8.6.5. Magnetic Field on the Axis of a Rotating Charged Disk
8.7. The Magnetic Scalar Potential
8.7.1. Scalar Potential in the Interior of an Infinite Solenoid
8.8. The Vector Potential and the Magnetic Flux Density
8.8.1. Calculation of the Vector Potential
8.8.2. Vector Potential of a Circular Loop
8.9. The Biot-Savart Law-Revisited
8.10. Various Results
8.10.1. VectorPoential for aCurrentCarrying Straight Conductor
8.10.2. Two Current Carrying Straight Conductors
8.11. Far Field Approximation
8.11.1. Square Current Loop and Magnetic Dipole
8.12. List of Formulae
8.13. Practice Problems and Self Assessment
9. Magnetic Forces, Inductance and Magnetisation
9.1. Chapter Goals
9.2. The Lorentz Force
9.3. Electron Moving in a Steady Magnetic Field
9.4. A Straight Wire Carrying a Current in a Magnetic Field
9.5. Other Formulations
9.6. Loop Carrying a Current in a Constant Magnetic Field
9.7. Torque on Loop Carrying a Current in a Constant Magnetic Field
9.7.1. The Magnetic Dipole and Torque on an Arbitrary Loop
9.8. Force between Two Current Elements
9.9. Inductance
9.9.1. Inductance of a Coil
9.9.2. Inductance of a Coaxial Line
9.9.3. Magnetic Energy
9.9.4. Inductance of a Circular Loop
9.9.5. Mutual inductance
9.10. Magnetic Materials and Magnetic Circuits
9.10.1. Magnetisation
9.10.2. Magnetic Circuits
IV. Time Varying Fields, Radiation and Propagation
10.Time Dependant Fields
10.1. Chapter Goals
10.2. List of Formulae
10.3. Faraday's Law
10.4. A Maxwell Equation from Faraday's Law
10.5. The Displacement Current Density
10.6. Time-DependentMaxwell's Equations
10.6.1. Point form of the Equations
10.7. Integral Form of Maxwell's Equations
10.8. The FundamentalEquations ofRadiation and Propagation
10.9. Time Domain Wave Equation
10.10.Frequency Domain Wave Equation
10.10.1.Phasors
10.11.The Wave Equation
10.12.Chapter Summary
10.13.Short Answer Questions
10.14.Problems
11.Electromagnetic Waves
11.1. Uniform Plane Wave
11.2. Wave Polarisation
11.2.1. Circular Polarisation
11.2.2. Elliptical Polarisation
11.3. Wave Propagation in Conducting Media
11.3.1. Low Conductivity Materials
11.3.2. High Conductivity Materials
11.4. Boundary Conditions
11.5. Reflection and Refraction of Waves
11.5.1. Reflection from a Metal Surface
11.5.1.1. Normal Incidence
11.5.2. Refraction from a Dielectric Surface
11.6. Poynting Vector and the Flow of Power
11.6.1. Poynting's Theorem
11.6.2. Poynting Vector
12.Transmission Lines
12.1. Time Domain Equation
12.2. Frequency Domain Equation
12.3. Solutions to the Transmission Line Equation
12.3.1. Power Considerations
12.3.2. Reflections from Discontinuities
12.3.3. StandingWave Ratio
12.3.4. Input Impedance Anywhere Along the Line
12.4. Transmission Line Charts
12.5. Transformer Matching
12.6. References
13.Waveguides
13.1. The Parallel Plate Waveguide
13.2. TEM mode Waveguides
13.3. The RectangularWaveguide
13.4. The CircularWaveguide
14.Radiation from Currents
14.1. Wave Equation due to Charges and Currents
14.2. Radiation from a Current Element
14.3. The Half-Wave Dipole Antenna
14.4. Basic Antenna Concepts
14.5. Directivity
14.5.1. Directivity from the Beam Pattern
14.6. Effective Aperture and Friis' Transmission Formula
15. Introduction to Antennas
15.1. Chapter Goals
15.2. Introduction
15.3. Linear Antenna Arrays
15.4. Linear Array with Equal Currents
15.4.1. The Array Factor
15.4.2. Nulls and Sidelobes
15.4.3. Beam Pointing Angle
15.5. Farfield Pattern
15.6. Aperture Antennas
15.7. Horn Antennas
15.7.1. Introduction
15.8. Parabolic Reflector
15.9. List of Formulae
15.10.Practice Problems and Self Assessment
16.Radio Wave Propagation
16.1. Introduction
16.2. Ground Wave Propagation
16.3. Earth Reflection
16.4. The Surface Wave
16.4.1. The Surface Wave for the Vertical Dipole
16.4.2. Wave Tilt of the Surface Wave
16.5. Surface Wave for a Horizontal Dipole
16.6. Approximations for Ground Wave Propagation
16.7. Tropospheric Propagation
16.7.1. Spherical Earth Considerations
16.7.2. Tropospheric Waves
16.8. Ionospheric Propagation
16.8.1. The Ionosphere
16.8.1.1. Plasma Oscillations
16.8.1.2. Wave Propagation in a Plasma
A. List of Symbols
A.1. Commonly Use Symbols and Nomenclature
B. Coordinate Systems
B.1. Rectangular to Cylindrical, Cylindrical to Rectangular
B.2. Rectangular to Spherical, Spherical to Rectangular
B.3. Spherical and Cylindrical Coordinates
B.4. Grad, Div, Curl and Laplacian in Different Coordinate Systems
B.4.1. Cartesian Coordinate
B.4.2. Cylindrical Coordinates
B.4.3. Spherical Coordinates
C. Mathematical Reference
C.1. General
C.1.1. Important Constants
C.1.2. Taylor's Series Expansion
C.1.3. C.2. Vector Identitiesdinate Systems
C.2.1. General
C.2.2. Gradient
C.2.3. Curl
C.2.4. Divergence
C.2.5. Double
C.3. Complex Variables
C.3.1. General
C.3.2. Inequalities
C.3.3. Complex conjugates
C.3.4. Euler's Identity
C.4. Trigonometry
C.4.1. Basic formulae
C.4.2. Sum and difference formulae
C.4.3. Double angle formulae
C.4.4. Half angle formulae
C.4.5. Product to sum formulae
C.4.6. Sum and difference to product
C.4.7. Triangle Formulae
C.4.8. Powers of the trigonometric functions
C.5. Differentiation
C.5.1. Rules
C.5.2. Differentiation of Functions
C.6. Integration
C.6.1. Common Substitutions
C.6.2. Indefinite Integrals
Bibliography
 
帳號:
密碼:
 

    

 

 

 

商品描述(中文翻譯)

* 涵蓋主題的全面性;同時涵蓋天線和無線波傳播
* 包含大量的解題範例、複習問題、數值問題、簡答題、選擇題以及開卷考題
* 提供重要公式和定義的詳細回顧,以便快速複習
* 每章節包含「你知道嗎」的部分,涵蓋課程大綱以外的額外有趣資訊
* 在可能的情況下,單獨框出概念的實際應用
* 附贈一張CD,包含逐章的MATLAB程式和章節插圖

本書從基本概念開始,例如標量和向量、坐標系統和向量微積分,旨在以簡單直接的方式教授該主題。介紹部分之後,內容分為三個邏輯部分,即靜電學、靜磁學和時間變化場、輻射及傳播。整本書都配有自我解釋的插圖和大量分級的解題範例。許多插圖還提供了所呈現模式的三維視圖。

為了給學生提供足夠的練習並加強重要概念,章末練習題包括複習問題、附有答案的數值問題、附有答案的簡答題、附有答案的選擇題以及附有提示的開卷考題。書末的附錄為學生提供了本課程所需的所有重要表格和資訊。

目錄

常用參考資料
0.1. 基本常數表
0.2. 單位
0.3. 希臘字母
0.4. SI前綴
0.5. 材料的介電常數
0.6. 材料的相對磁導率
I. 介紹材料
1. 標量和向量
1.1. 介紹
1.2. 標量
1.2.1. 操作標量的規則
1.2.2. 計算追蹤
1.2.3. 計算的量級
1.2.4. 近似
1.3. 向量
1.3.1. 單位向量
1.3.2. 向量加法
1.3.2.1. 一個方便的技巧
1.3.2.2. 向量加法的計算
1.3.3. 點積或標量積
1.3.3.1. 功和標量積
1.3.3.2. 正交單位向量的標量積
1.3.4. 叉積或向量積
1.3.4.1. 正交單位向量的叉積
1.3.4.2. 矩形坐標系中的叉積
1.3.4.3. 記憶叉積計算
1.3.4.4. 標量三重積
1.4. 單位和維度
1.5. 記住的要點
1.6. 練習問題和自我評估
2. 坐標系統和場
2.1. 介紹
2.2. 標量場和向量場
2.2.1. 標量場
2.2.2. 向量場
2.3. 矩形坐標系
2.3.1. 兩點之間的距離
2.3.2. 方向餘弦
2.3.3. 直線的向量方程
2.3.4. 平面的方程
2.4. 圓柱坐標系
2.4.1. 圓柱坐標中的表面和直線方程
2.5. 球坐標系
2.6. 記住的要點
2.7. 練習問題和自我評估
3. 向量微積分
3.1. 章節目標
3.2. 基本三維微積分
3.2.1. 一條線的微分元素
3.2.2. 線積分
3.2.3. 一個表面的微分元素
3.2.4. 表面積分
3.2.5. 體積積分
3.3. 微分微積分概念
3.3.1. Del或Nabla運算子
3.3.2. 梯度
3.3.3. 旋度
3.3.4. 散度
3.4. 馬克士威方程
3.5. 電磁場的單位和維度
3.6. 公式列表
3.7. 練習問題和自我評估
II. 靜電學
4. 電場和高斯定律
4.1. 章節目標
4.2. 靜電學:介紹
4.3. 電荷
4.3.1. Dirac Delta函數
4.4. 庫倫定律和電場
4.5. 由點電荷系統產生的電場
4.5.1. 電偶極子
4.5.2. 由任意數量的點電荷產生的電場
4.6. 由連續電荷分佈產生的電場
4.6.1. 無限長線電荷
4.6.2. 無限面電荷
4.7. 電位移D和通量密度
4.8. 高斯定律
4.9. 高斯定律應用於球對稱情況
4.9.1. 高斯定律應用於點電荷
4.9.2. 高斯定律應用於帶電球體
4.10. 高斯定律應用於圓柱對稱情況
4.11. 高斯定律應用於矩形對稱情況
4.12. 公式列表
4.13. 練習問題和自我評估
5. 能量和電位
5.1. 章節目標
5.2. 由點電荷產生的電位
5.3. 等電位面
5.4. 潛在能量
5.5. 由點電荷系統產生的電位
5.5.1. 電偶極子的遠場
5.6. 由任意連續電荷分佈產生的電位
5.7. 公式列表
5.8. 練習問題和自我評估
6. 電場和材料介質
6.1. 章節目標
6.2. 電流和電流密度
6.3. 連續性方程
6.4. 導體、半導體和介電體
6.4.1. 導體和電阻
6.4.2. 導體的鬆弛時間
6.4.3. 影像法
6.4.4. 半導體
6.4.5. 介電體
6.5. 電容
6.5.1. 平行板電容器
6.5.2. 同軸線
6.5.3. 兩導體線
6.6. 電容和電阻之間的關係
6.7. 靜電場的邊界條件
6.8. 電場中儲存的能量
6.9. 公式列表
6.10. 練習問題和自我評估
7. 拉普拉斯方程和泊松方程
7.1. 章節目標
7.2. 介紹
7.3. 唯一性定理
7.4. 拉普拉斯方程
7.4.1. 一些一維解
7.4.1.1. 拉普拉斯方程應用於無限平行平面
7.4.1.2. 拉普拉斯方程應用於同心圓柱
7.4.1.3. 拉普拉斯方程應用於同心球體
7.4.1.4. 拉普拉斯方程應用於兩個同軸圓錐
7.4.2. 拉普拉斯方程的二維解
7.4.2.1. 解析函數
7.4.3. 變數分離法
7.4.4. 數值技術
7.5. 泊松方程
7.5.1. 一維解
7.6. 公式列表
7.7. 練習問題和自我評估
III. 靜磁學
8. 穩定磁場
8.1. 章節目標
8.2. 介紹
8.3. Biot-Savart定律
8.3.1. Biot-Savart定律應用於微小的線電流
8.4. 電流的類型
8.4.1. Biot-Savart定律應用於無限長直線
8.4.2. 長直線的磁場線
8.4.3. Biot-Savart定律應用於短直線
8.5. 安培定律
8.5.1. 安培定律應用於長直線
8.5.2. 安培定律應用於半徑為a的導線
8.5.3. 安培定律應用於無限螺線管
8.5.4. 安培定律應用於圍繞圓環的繞組
8.6. 磁場-一些計算
8.6.1. 帶電流的線圈
8.6.2. 由電流面產生的磁場
8.6.3. 無限螺線管內部的磁場
8.6.4. 有限螺線管內部的磁場
8.6.5. 旋轉帶電圓盤軸上的磁場
8.7. 磁標量勢
8.7.1. 無限螺線管內部的標量勢
8.8. 向量勢和磁通密度
8.8.1. 向量勢的計算
8.8.2. 圓形線圈的向量勢
8.9. Biot-Savart定律-重訪
8.10. 各種結果
8.10.1. 帶電流的直導體的向量勢
8.10.2. 兩個帶電流的直導體
8.11. 遠場近似
8.11.1. 正方形電流環和磁偶極子
8.12. 公式列表
8.13. 練習問題和自我評估
9. 磁力、電感和磁化
9.1. 章節目標
9.2. 洛倫茲力
9.3. 在穩定磁場中移動的電子
9.4. 在磁場中帶電流的直導線
9.5. 其他公式
9.6. 在恆定磁場中帶電流的環
9.7. 在恆定磁場中帶電流的環上的扭矩
9.7.1. 磁偶極子和任意環上的扭矩
9.8. 兩個電流元之間的力
9.9. 電感
9.9.1. 線圈的電感
9.9.2. 同軸線的電感
9.9.3. 磁能
9.9.4. 圓形線圈的電感
9.9.5. 互感
9.10. 磁性材料和磁路
9.10.1. 磁化
9.10.2. 磁路
IV. 時間變化場、輻射和傳播
10. 時間依賴場