Examples in Parametric Inference with R
暫譯: R中的參數推斷範例
Ulhas Jayram Dixit
- 出版商: Springer
- 出版日期: 2018-05-30
- 售價: $3,050
- 貴賓價: 9.5 折 $2,898
- 語言: 英文
- 頁數: 484
- 裝訂: Paperback
- ISBN: 9811092761
- ISBN-13: 9789811092763
海外代購書籍(需單獨結帳)
商品描述
This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests.
Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.
商品描述(中文翻譯)
這本書討論了使用 R 進行參數推斷的範例。結合基本理論與現代方法,它呈現了統計推斷的最新發展和趨勢,適合沒有高級數學和統計背景的學生。書中討論的主題是統計推斷中基本且常見的,因此可作為深入研究的起點。這本書分為八個章節:第一章提供了充分性和完整性主題的概述,第二章簡要討論了無偏估計。第三章專注於矩和最大似然估計量的研究,第四章介紹了方差的界限。在第五章中,討論了一致估計量的主題。第六章探討了貝葉斯方法,第七章研究了一些更強大的檢定。最後,第八章檢視了無偏檢定和其他檢定。
對於統計學和數學的高年級本科生及研究生,以及那些已經修過概率入門課程的學生,這本書將大有裨益。學生在開始這門課程之前,應該具備矩陣代數、微積分、概率和分佈理論的知識。書中提供了大量相關的已解和未解問題,為教師和講師提供了優秀的工具,可以從練習中指派作業問題,而學生會發現已解的範例對於解決練習問題非常有幫助。