A Modern Introduction to Probability and Statistics : Understanding Why and How
暫譯: 現代機率與統計入門:理解為什麼與如何

F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester

買這商品的人也買了...

商品描述

Description

Probability and Statistics are studied by most science students, usually as a second- or third-year course. Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real-life and using real data, the authors can show how the fundamentals of probabilistic and statistical theories arise intuitively. It provides a tried and tested, self-contained course, that can also be used for self-study.

A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to the students. In addition the book contains over 350 exercises, half of which have answers, of which half have full solutions. A website at www.springeronline.com/1-85233-896-2 gives access to the data files used in the text, and, for instructors, the remaining solutions. The only pre-requisite for the book is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to useful modern methods such as the bootstrap.

This will be a key text for undergraduates in Computer Science, Physics, Mathematics, Chemistry, Biology and Business Studies who are studying a mathematical statistics course, and also for more intensive engineering statistics courses for undergraduates in all engineering subjects.

 

Table of contents

Why Probability and Statistics?- Outcomes, Events and Probability.- Conditional Probability and Independence.- Discrete Random Variables.- Continuous Random Variables.- Simulation.- Expectation and Variance.- Computations with Random Variables.- Joint Distributions and Independence.- Covariance and Correlation.- More Computations with More Random Variables.- The Poisson Process.- The Law of Large Numbers.- The Central Limit Theorem.- Exploratory Data Analysis: Graphical Summaries.- Exploratory Data Analysis: Numerical Summaries.- Basic Statistical Models.- The Bootstrap.- Unbiased Estimators.- Efficiency and Mean Squared Error.- Maximum Likelihood.- The Method of Least Squares.- Confidence Intervals for the Mean.- More on Confidence Intervals.- Testing Hypotheses: Essentials.- Testing Hypotheses: Elaboration.- The t-test.- Comparing Two Samples.- Datasets.- Appendix A: Answers to Selected Exercises.- Appendix B: Solutions to Selected Exercises.- References.- Index.

商品描述(中文翻譯)

**描述**

機率與統計是大多數科學學生所學習的科目,通常作為二年級或三年級的課程。當前許多相關的教科書僅僅是食譜式的,因此學生並不清楚為什麼要執行所學的方法,或這些方法為什麼有效。本書的優勢在於重新針對這些不足之處;透過使用實際生活中的例子和真實數據,作者能夠直觀地展示機率和統計理論的基本原理。它提供了一個經過驗證的、自成一體的課程,也可以用於自學。

《現代機率與統計導論》包含許多快速練習,以便給學生直接的反饋。此外,該書還包含超過350個練習題,其中一半有答案,並且其中一半有完整解答。網站 www.springeronline.com/1-85233-896-2 提供了文本中使用的數據檔案的訪問權限,對於教師來說,還有其餘的解答。本書的唯一先修課程是微積分的初級課程;文本涵蓋標準的統計和機率材料,並發展超越傳統的參數模型,進入泊松過程,並進一步探討如自助法等有用的現代方法。

這將是計算機科學、物理學、數學、化學、生物學和商業研究等本科生學習數學統計課程的關鍵文本,對於所有工程學科的本科生進行更深入的工程統計課程也同樣適用。

**目錄**

為什麼機率與統計?- 結果、事件與機率。- 條件機率與獨立性。- 離散隨機變數。- 連續隨機變數。- 模擬。- 期望值與變異數。- 隨機變數的計算。- 聯合分佈與獨立性。- 協方差與相關性。- 更多隨機變數的計算。- 泊松過程。- 大數法則。- 中心極限定理。- 探索性數據分析:圖形摘要。- 探索性數據分析:數值摘要。- 基本統計模型。- 自助法。- 無偏估計量。- 效率與均方誤差。- 最大似然法。- 最小二乘法。- 均值的信賴區間。- 更多信賴區間的內容。- 假設檢定:基本要素。- 假設檢定:詳細說明。- t檢定。- 比較兩個樣本。- 數據集。- 附錄A:選定練習的答案。- 附錄B:選定練習的解答。- 參考文獻。- 索引。