Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics (SpringerBriefs in Statistics)
Shuhei Mano
- 出版商: Springer
- 出版日期: 2018-07-25
- 售價: $2,610
- 貴賓價: 9.5 折 $2,480
- 語言: 英文
- 頁數: 144
- 裝訂: Paperback
- ISBN: 4431558861
- ISBN-13: 9784431558866
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences.
商品描述(中文翻譯)
本書專注於與各種組合隨機過程相關的統計推斷。具體而言,它討論了三個通常獨立研究的主題之間的交集:分割、超幾何系統和Dirichlet過程。Gibbs分割是一類整數分割的度量,幾個先前的過程,如Dirichlet過程,自然出現在與無限可交換的Gibbs分割相關的情況下。例子包括具有固定邊際總和的列聯表上的分佈,以及給定長度的Gibbs分割的條件分佈。A-超幾何分佈是一類離散指數族,並作為來自對數仿射模型的多項式樣本的條件分佈出現。正規化常數是A-超幾何多項式,這是一組由矩陣A決定的多變數線性微分方程系統的解,稱為A-超幾何系統。本書提出基於A-超幾何系統代數性質的推斷方法,並介紹了全範圍梯度方法,該方法在不進行組合枚舉的情況下數值解決全範圍系統,以計算正規化常數。此外,它還討論了來自A-超幾何分佈的馬可夫鏈蒙特卡羅和直接抽樣器,以及利用多面體和信息幾何的性質對兩行矩陣的A-超幾何分佈進行最大似然估計。所討論的主題是簡單問題,但本書的跨學科方法吸引了對組合隨機過程的統計推斷感興趣的廣泛讀者,包括正在發展統計理論和方法論的統計學家、希望發現其理論結果應用的數學家,以及在各個數據科學領域工作的研究人員。