Thermodynamics and Introductory Statistical Mechanics
暫譯: 熱力學與入門統計力學
Bruno Linder
- 出版商: Wiley
- 出版日期: 2004-09-24
- 售價: $1,100
- 貴賓價: 9.8 折 $1,078
- 語言: 英文
- 頁數: 232
- 裝訂: Hardcover
- ISBN: 0471474592
- ISBN-13: 9780471474593
-
相關分類:
熱力學 Thermodynamics
無法訂購
相關主題
商品描述
Description:
In this clear and concise introduction to thermodynamics and statistical mechanics the reader, who will have some previous exposure to thermodynamics, will be guided through each of the two disciplines separately initially to provide an in-depth understanding of the area and thereafter the connection between the two is presented and discussed.
In addition, mathematical techniques are introduced at appropriate times, highlighting such use as: exact and inexact differentials, partial derivatives, Caratheodory's theorem, Legendre transformation, and combinatory analysis.
* Emphasis is placed equally on fundamentals and applications
* Several problems are included
Table of Contents:
PREFACE.
1 INTRODUCTORY REMARKS.
1.1 Scope and Objectives.
1.2 Level of Course.
1.3 Course Outline.
1.4 Books.
PART I: THERMODYNAMICS.
2 BASIC CONCEPTS AND DEFINITIONS.
2.1 Systems and Surroundings.
2.2 State Variables and Thermodynamic Properties.
2.3 Intensive and Extensive Variables.
2.4 Homogeneous and Heterogeneous Systems, Phases.
2.5 Work.
2.6 Reversible and Quasi-Static Processes.
2.6.1 Quasi-Static Process.
2.6.2 Reversible Process.
2.7 Adiabatic and Diathermal Walls.
2.8 Thermal Contact and Thermal Equilibrium.
3 THE LAWS OF THERMODYNAMICS I.
3.1 The Zeroth Law—Temperature.
3.2 The First Law—Traditional Approach.
3.3 Mathematical Interlude I: Exact and Inexact Differentials.
3.4 The First Law—Axiomatic Approach.
3.5 Some Applications of the First Law.
3.5.1 Heat Capacity.
3.5.2 Heat and Internal Energy.
3.5.3 Heat and Enthalpy.
3.6 Mathematical Interlude II: Partial Derivatives.
3.6.1 Relations Between Partials of Dependent Variables.
3.6.2 Relations Between Partials with Different Subscripts.
3.7 Other Applications of the First Law.
3.7.1 C<sub>P</sub> — C<sub>V</sub>.
3.7.2 Isothermal Change, Ideal Gas.
3.7.3 Adiabatic Change, Ideal Gas.
3.7.4 The Joule and the Joule-Thomson Coefficients.
4 THE LAWS OF THERMODYNAMICS II.
4.1 The Second Law—Traditional Approach.
4.2 Engine Efficiency: Absolute Temperature.
4.2.1 Ideal Gas.
4.2.2 Coupled Cycles.
4.3 Generalization: Arbitrary Cycle.
4.4 The Clausius Inequality.
4.5 The Second Law—Axiomatic Approach (Carathe´odory).
4.6 Mathematical Interlude III: Pfaffian Differential Forms.
4.7 Pfaffian Expressions in Two Variables.
4.8 Pfaffian Expressions in More Than Two Dimensions.
4.9 Carathe´odory’s Theorem.
4.10 Entropy—Axiomatic Approach.
4.11 Entropy Changes for Nonisolated Systems.
4.12 Summary.
4.13 Some Applications of the Second Law.
4.13.1 Reversible Processes (PV Work Only).
4.13.2 Irreversible Processes.
5 USEFUL FUNCTIONS: THE FREE ENERGY FUNCTIONS.
5.1 Mathematical Interlude IV: Legendre Transformations.
5.1.1 Application of the Legendre Transformation.
5.2 Maxwell Relations.
5.3 The Gibbs-Helmholtz Equations.
5.4 Relation of ΔA and ΔG to Work: Criteria for Spontaneity.
5.4.1 Expansion and Other Types of Work.
5.4.2 Comments.
5.5 Generalization to Open Systems and Systems of Variable Composition.
5.5.1 Single Component System.
5.5.2 Multicomponent Systems.
5.6 The Chemical Potential.
5.7 Mathematical Interlude V: Euler’s Theorem.
5.8 Thermodynamic Potentials.
6 THE THIRD LAW OF THERMODYNAMICS.
6.1 Statements of the Third Law.
6.2 Additional Comments and Conclusions.
7 GENERAL CONDITIONS FOR EQUILIBRIUM AND STABILITY.
7.1 Virtual Variations.
7.2 Thermodynamic Potentials—Inequalities.
7.3 Equilibrium Condition From Energy.
7.3.1 Boundary Fully Heat Conducting, Deformable, Permeable (Normal System).
7.3.2 Special Cases: Boundary Semi-Heat Conducting, Semi-Deformable, or Semi-Permeable.
7.4 Equilibrium Conditions From Other Potentials.
7.5 General Conditions for Stability.
7.6 Stability Conditions From E.
7.7 Stability Conditions From Cross Terms.
7.8 Stability Conditions From Other Potentials.
7.9 Derivatives of Thermodynamic Potentials With Respect to Intensive Variables.
8 APPLICATION OF THERMODYNAMICS TO GASES, LIQUIDS, AND SOLIDS.
8.1 Gases.
8.2 Enthalpy, Entropy, Chemical Potential, Fugacity.
8.2.1 Enthalpy.
8.2.2 Entropy.
8.2.3 Chemical Potential.
8.2.4 Fugacity.
8.3 Standard States of Gases.
8.4 Mixtures of Gases.
8.4.1 Partial Fugacity.
8.4.2 Free Energy, Entropy, Enthalpy, and Volume of Mixing of Gases.
8.5 Thermodynamics of Condensed Systems.
8.5.1 The Chemical Potential.
8.5.2 Entropy.
8.5.3 Enthalpy.
9 PHASE AND CHEMICAL EQUILIBRIA.
9.1 The Phase Rule.
9.2 The Clapeyron Equation.
9.3 The Clausius-Clapeyron Equation.
9.4 The Generalized Clapeyron Equation.
9.5 Chemical Equilibrium.
9.6 The Equilibrium Constant.
10 SOLUTIONS—NONELECTROLYTES.
10.1 Activities and Standard State Conventions.
10.1.1 Gases.
10.1.2 Pure Liquids and Solids.
10.1.3 Mixtures.
10.1.3.1 Liquid–Liquid Solutions—Convention I (Con I).
10.1.3.2 Solid–Liquid Solutions—Convention II (Con II).
10.2 Ideal and Ideally Dilute Solutions; Raoult’s and Henry’s Laws.
10.2.1 Ideal Solutions.
10.2.2 Ideally Dilute Solutions.
10.3 Thermodynamic Functions of Mixing.
10.3.1 For Ideal Solutions.
10.3.2 For Nonideal Solutions.
10.4 Colligative Properties.
10.4.1 Lowering of Solvent Vapor Pressure.
10.4.2 Freezing Point Depression.
10.4.3 Boiling Point Elevation.
10.4.4 Osmotic Pressure.
11 PROCESSES INVOLVING WORK OTHER THAN PRESSURE-VOLUME WORK.
11.1 P-V Work and One Other Type of Work.
11.2 P-V, σA, and fL Work.
12 PHASE TRANSITIONS AND CRITICAL PHENOMENA.
12.1 Stable, Metastable, and Unstable Isotherms.
12.2 The Critical Region.
PART II: INTRODUCTORY STATISTICAL MECHANICS.
13 PRINCIPLES OF STATISTICAL MECHANICS.
13.1 Introduction.
13.2 Preliminary Discussion—Simple Problem.
13.3 Time and Ensemble Averages.
13.4 Number of Microstates, Ω<sub>D</sub>, Distributions D<sub><I>I</I></sub>.
13.5 Mathematical Interlude VI: Combinatory Analysis.
13.6 Fundamental Problem in Statistical Mechanics.
13.7 Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein Statistics ‘‘Corrected’’ Maxwell-Boltzmann Statistics.
13.7.1 Maxwell-Boltzmann Statistics.
13.7.2 Fermi-Dirac Statistics.
13.7.3 Bose-Einstein Statistics
13.7.4 ‘‘Corrected’’ Maxwell-Boltzmann Statistics.
13.8 Systems of Distinguishable (Localized) and Indistinguishable (Nonlocalized) Particles.
13.9 Maximizing Ω<sub>D</sub>
13.10 Probability of a Quantum State: The Partition Function.
13.10.1 Maxwell-Boltzmann Statistics.
13.10.2 Corrected Maxwell-Boltzmann Statistics.
14 THERMODYNAMIC CONNECTION.
14.1 Energy, Heat, and Work.
14.2 Entropy.
14.2.1 Entropy of Nonlocalized Systems (Gases).
14.2.2 Entropy of Localized Systems (Crystalline Solids).
14.3 Identification of β with 1/kT.
14.4 Pressure.
14.5 The Functions E, H, S, A, G, and μ.
15 MOLECULAR PARTITION FUNCTION.
15.1 Translational Partition Function.
15.2 Vibrational Partition Function: Diatomics.
15.3 Rotational Partition Function: Diatomics.
15.4 Electronic Partition Function.
15.5 Nuclear Spin States.
15.6 The ‘‘Zero’’ of Energy.
16 STATISTICAL MECHANICAL APPLICATIONS.
16.1 Population Ratios.
16.2 Thermodynamic Functions of Gases.
16.3 Equilibrium Constants.
16.4 Systems of Localized Particles: The Einstein Solid.
16.4.1 Energy.
16.4.2 Heat Capacity.
16.4.3 Entropy.
16.5 Summary.
ANNOTATED BIBLIOGRAPHY.
APPENDIX I: HOMEWORK PROBLEM SETS.
Problem Set I.
Problem Set II.
Problem Set III.
Problem Set IV.
Problem Set V.
Problem Set VI.
Problem Set VII.
Problem Set VIII.
Problem Set IX.
Problem Set X.
APPENDIX II: SOLUTIONS TO PROBLEMS.
Solution to Set I.
Solution to Set II.
Solution to Set III.
Solution to Set IV.
Solution to Set V.
Solution to Set VI.
Solution to Set VII.
Solution to Set VIII.
Solution to Set IX.
Solution to Set X.
INDEX.
商品描述(中文翻譯)
描述:在這本清晰且簡明的熱力學與統計力學入門書中,讀者將在初期分別了解這兩個學科,以便深入理解該領域,隨後將介紹並討論兩者之間的聯繫。此外,適時引入數學技術,強調其應用,例如:精確與不精確微分、偏導數、Caratheodory 定理、Legendre 變換及組合分析。* 同樣重視基礎與應用* 包含若干問題
目錄:
前言
1 引言
1.1 範圍與目標
1.2 課程水平
1.3 課程大綱
1.4 書籍
第一部分:熱力學
2 基本概念與定義
2.1 系統與環境
2.2 狀態變數與熱力學性質
2.3 強度變數與廣度變數
2.4 均質系統與非均質系統、相
2.5 功
2.6 可逆與準靜態過程
2.6.1 準靜態過程
2.6.2 可逆過程
2.7 絕熱與導熱壁
2.8 熱接觸與熱平衡
3 熱力學定律 I
3.1 零定律—溫度
3.2 第一條定律—傳統方法
3.3 數學插曲 I:精確與不精確微分
3.4 第一條定律—公理方法
3.5 第一條定律的一些應用
3.5.1 熱容量
3.5.2 熱與內能
3.5.3 熱與焓
3.6 數學插曲 II:偏導數
3.6.1 依賴變數的偏導數之間的關係
3.6.2 不同下標的偏導數之間的關係
3.7 第一條定律的其他應用
3.7.1 CP — CV
3.7.2 等溫變化,理想氣體
3.7.3 絕熱變化,理想氣體
3.7.4 Joule 及 Joule-Thomson 係數
4 熱力學定律 II
4.1 第二條定律—傳統方法
4.2 引擎效率:絕對溫度
4.2.1 理想氣體
4.2.2 耦合循環
4.3 一般化:任意循環
4.4 Clausius 不等式
4.5 第二條定律—公理方法 (Caratheodory)
4.6 數學插曲 III:Pfaffian 微分形式
4.7 兩變數的 Pfaffian 表達式
4.8 超過兩維的 Pfaffian 表達式
4.9 Caratheodory 定理
4.10 熵—公理方法
4.11 非孤立系統的熵變化
4.12 總結
4.13 第二條定律的一些應用
4.13.1 可逆過程 (僅 PV 功)
4.13.2 不可逆過程
5 有用的函數:自由能函數
5.1 數學插曲 IV:Legendre 變換
5.1.1 Legendre 變換的應用
5.2 Maxwell 關係
5.3 Gibbs-Helmholtz 方程
5.4 ΔA 與 ΔG 與功的關係:自發性的標準
5.4.1 擴展及其他類型的功
5.4.2 評論
5.5 對開放系統及可變組成系統的概括
5.5.1 單組分系統
5.5.2 多組分系統
5.6 化學勢
5.7 數學插曲 V:Euler 定理
5.8 熱力學勢
6 熱力學的第三條定律
6.1 第三條定律的陳述
6.2 附加評論與結論
7 平衡與穩定性的一般條件
7.1 虛變化
7.2 熱力學勢—不等式
7.3 從能量得出的平衡條件
7.3.1 邊界完全導熱、可變形、可滲透 (正常系統)
7.3.2 特殊情況:邊界半導熱、半可變形或半可滲透
7.4 從其他勢得出的平衡條件
7.5 穩定性的一般條件
7.6 從 E 得出的穩定性條件
7.7 從交叉項得出的穩定性條件
7.8 從其他勢得出的穩定性條件
7.9 熱力學勢對強度變數的導數
8 熱力學在氣體、液體和固體中的應用
8.1 氣體
8.2 焓、熵、化學勢、逃逸度
8.2.1 焓
8.2.2 熵
8.2.3 化學勢
8.2.4 逃逸度
8.3 氣體的標準狀態
8.4 氣體的混合
8.4.1 部分逃逸度
8.4.2 氣體的自由能、熵、焓和混合體積
8.5 凝聚系統的熱力學
8.5.1 化學勢
8.5.2 熵
8.5.3 焓
9 相與化學平衡
9.1 相規則
9.2 Clapeyron 方程
9.3 Clausius-Clapeyron 方程
9.4 一般化的 Clapeyron 方程
9.5 化學平衡
9.6 平衡常數
10 溶液—非電解質
10.1 活度與標準狀態慣例
10.1.1 氣體
10.1.2 純液體與固體
10.1.3 混合物
10.1.3.1 液-液溶液—慣例 I (Con I)
10.1.3.2 固-液溶液—慣例 II (Con II)
10.2 理想與理想稀溶液;Raoult 法則與 Henry 法則
10.2.1 理想溶液
10.2.2 理想稀溶液
10.3 混合的熱力學函數
10.3.1 對於理想溶液
10.3.2 對於非理想溶液
10.4 依賴性質
10.4.1 降低溶劑蒸氣壓
10.4.2 凍結點降低
10.4.3 沸點升高
10.4.4 滲透壓
11 涉及非壓力-體積功的其他功的過程
11.1 P-V 功與另一種功
11.2 P-V、σA 和 fL 功
12 相變化與臨界現象
12.1 穩定、亞穩定與不穩定等溫線
12.2 臨界區域
第二部分:入門統計力學
13 統計力學原理
13.1 介紹
13.2 初步討論—簡單問題
13.3 時間與集合平均
13.4 微狀態數量,ΩD,分佈 DI