Motivated Reinforcement Learning: Curious Characters for Multiuser Games (Hardcover)
暫譯: 動機強化學習:多用戶遊戲中的好奇角色 (精裝版)

Kathryn E. Merrick, Mary Lou Maher

  • 出版商: Springer
  • 出版日期: 2009-05-27
  • 售價: $4,200
  • 貴賓價: 9.5$3,990
  • 語言: 英文
  • 頁數: 206
  • 裝訂: Hardcover
  • ISBN: 3540891862
  • ISBN-13: 9783540891864
  • 相關分類: ReinforcementDeepLearning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Motivated learning is an emerging research field in artificial intelligence and cognitive modelling. Computational models of motivation extend reinforcement learning to adaptive, multitask learning in complex, dynamic environments – the goal being to understand how machines can develop new skills and achieve goals that were not predefined by human engineers. In particular, this book describes how motivated reinforcement learning agents can be used in computer games for the design of non-player characters that can adapt their behaviour in response to unexpected changes in their environment.

This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The authors start with overviews of motivation and reinforcement learning, then describe models for motivated reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended virtual world.

Researchers in artificial intelligence, machine learning and artificial life will benefit from this book, as will practitioners working on complex, dynamic systems – in particular multiuser, online games.

商品描述(中文翻譯)

動機學習是一個新興的人工智慧與認知模型研究領域。動機的計算模型將強化學習擴展到在複雜且動態環境中的自適應多任務學習,目標是理解機器如何發展新技能並達成未經人類工程師預先定義的目標。特別是,本書描述了如何在電腦遊戲中使用動機強化學習代理來設計能夠根據環境中意外變化調整其行為的非玩家角色。

本書涵蓋了動機計算模型在強化學習中的設計、應用和評估。作者首先概述了動機和強化學習,然後描述了動機強化學習的模型。這些模型的性能通過在模擬遊戲場景和一個開放式虛擬世界中的應用來展示。

從事人工智慧、機器學習和人工生命研究的學者,以及在複雜動態系統上工作的實務者,特別是多用戶在線遊戲的開發者,都將受益於本書。