Hierarchical Feature Selection for Knowledge Discovery: Application of Data Mining to the Biology of Ageing (Advanced Information and Knowledge Processing)
暫譯: 層次特徵選擇於知識發現:數據挖掘在老化生物學中的應用(高級資訊與知識處理)
Cen Wan
- 出版商: Springer
- 出版日期: 2018-12-12
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 120
- 裝訂: Hardcover
- ISBN: 3319979183
- ISBN-13: 9783319979182
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
商品描述
This book is the first work that systematically describes the procedure of data mining and knowledge discovery on Bioinformatics databases by using the state-of-the-art hierarchical feature selection algorithms. The novelties of this book are three-fold. To begin with, this book discusses the hierarchical feature selection in depth, which is generally a novel research area in Data Mining/Machine Learning. Seven different state-of-the-art hierarchical feature selection algorithms are discussed and evaluated by working with four types of interpretable classification algorithms (i.e. three types of Bayesian network classification algorithms and the k-nearest neighbours classification algorithm). Moreover, this book discusses the application of those hierarchical feature selection algorithms on the well-known Gene Ontology database, where the entries (terms) are hierarchically structured. Gene Ontology database that unifies the representations of gene and gene products annotation provides the resource for mining valuable knowledge about certain biological research topics, such as the Biology of Ageing. Furthermore, this book discusses the mined biological patterns by the hierarchical feature selection algorithms relevant to the ageing-associated genes. Those patterns reveal the potential ageing-associated factors that inspire future research directions for the Biology of Ageing research.
商品描述(中文翻譯)
本書是第一部系統性描述在生物資訊數據庫上使用最先進的階層特徵選擇算法進行數據挖掘和知識發現的著作。本書的創新之處有三個方面。首先,本書深入探討了階層特徵選擇,這通常是數據挖掘/機器學習中的一個新興研究領域。書中討論並評估了七種不同的最先進階層特徵選擇算法,並與四種可解釋的分類算法(即三種貝葉斯網絡分類算法和k最近鄰分類算法)進行合作。此外,本書還討論了這些階層特徵選擇算法在著名的基因本體(Gene Ontology)數據庫上的應用,該數據庫的條目(術語)是以階層結構組織的。基因本體數據庫統一了基因及其產物註釋的表示,為挖掘有關某些生物研究主題(如衰老生物學)的有價值知識提供了資源。此外,本書還討論了通過階層特徵選擇算法挖掘的與衰老相關基因的生物模式。這些模式揭示了潛在的衰老相關因素,啟發了未來衰老生物學研究的研究方向。