Search Techniques in Intelligent Classification Systems (SpringerBriefs in Optimization)
暫譯: 智能分類系統中的搜尋技術 (SpringerBriefs in Optimization)

Andrey V. V. Savchenko

  • 出版商: Springer
  • 出版日期: 2016-05-12
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 96
  • 裝訂: Paperback
  • ISBN: 3319305131
  • ISBN-13: 9783319305134
  • 海外代購書籍(需單獨結帳)

商品描述

A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures.

This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to:

- Why conventional implementation of the naive Bayesian approach does not work well in image classification?

- How to deal with insufficient performance of hierarchical classification systems?

- Is it possible to prevent an exhaustive search of the nearest neighbor in a database?

商品描述(中文翻譯)

本書提出了一種統一的方法論,用於對各種複雜物體進行分類。通過概率論,探討了適合於影像和數據分析實際應用的新型漸近最小最大準則,包括特殊情況如詹森-香農散度(Jensen-Shannon divergence)和概率神經網絡(probabilistic neural network)。本書還介紹了一種最佳近似最近鄰搜索算法,該算法能夠加快數據庫的分類速度。利用粗集理論、序列分析和粒狀計算來提高層次分類器的性能。書中包含了面部識別(包括深度神經網絡)、語音控制系統中的孤立命令識別以及由Kinect深度相機捕捉的視音素分類等實際範例。這種方法通過使用應用的不相似性度量的精確概率密度,創造了快速且準確的搜索程序。

本書可作為獨立學習的指南,也可作為技術導向的研究生課程中智能系統和數據挖掘的補充材料。對於對智能分類系統的理論和實踐方面感興趣的學生和研究人員,本書將提供以下問題的答案:

- 為什麼傳統的天真貝葉斯方法在影像分類中效果不佳?
- 如何處理層次分類系統性能不足的問題?
- 是否有可能避免對數據庫中最近鄰的穩定搜索?

最後瀏覽商品 (1)