Text Mining for Biology And Biomedicine
暫譯: 生物與生醫的文本挖掘

  • 出版商: Artech House Publish
  • 出版日期: 2006-01-27
  • 售價: $4,170
  • 貴賓價: 9.5$3,962
  • 語言: 英文
  • 頁數: 286
  • 裝訂: Hardcover
  • ISBN: 158053984X
  • ISBN-13: 9781580539845
  • 相關分類: Text-mining
  • 無法訂購

買這商品的人也買了...

商品描述

Description

Heres the first focused book that puts the full range of cutting-edge biological text mining techniques and tools at your command. This comprehensive volume describes the methods of natural language processing (NLP) and their applications in the biological domain, and spells out in detail the various lexical, terminological, and ontological resources now at your disposal ?and how best to utilize them.

You see how terminology management tools like term extraction and term structuring facilitate effective mining, and learn ways to readily identify biomedical named entities and abbreviations. The book offers step-by-step guidance to implement various information extraction methods for biological applications, from pattern matching and full parsing approaches to sublanguage- and ontology-driven extraction techniques. It discusses strategies to make the most of text collections and to use corpora and corpus annotation efficiently in text mining applications, and also gives you tested guidelines for evaluating and optimizing text mining systems. Rounding out the volume are techniques for integrating text mining and data mining efforts to further facilitate biological analyses.

Both a critical review of the state of the art and a solution-focused guide packed with field-tested expertise and advice, this first-of-its-kind work will prove indispensable whether youre long experienced with text mining from biomedical literature or entirely new to the field.

 

Table of Contents

Introduction to Text Mining for Biology and Biomedicine‑ Text Mining: Aims, Challenges and Solutions. Outline of the Book. References.

Levels of Natural Language Processing for Text Mining ‑ Introduction. The Lexical Level of Natural Language Processing. The Syntactic Level of Natural Language Processing. The Semantic Level of Natural Language Processing. Natural Language System Architecture for Text Mining. Conclusions and Outlook. References.

Lexical, Terminological and Ontological Resources For Biological Text Mining ‑ Introduction. Extended Example. Lexical Resources. Terminological Resources. Ontological Resources. Issues Related to Entity Recognition. Issues Related to Relation Extraction. Conclusion. References.

Automatic Terminology Management in Biomedicine ‑ Introduction. Terminological Resources in Biomedicine. Automatic Terminology Management. Automatic Term Recognition. Dealing with Term Variation and Ambiguity. Automatic Term Structuring. Examples of Automatic Term Management Systems. Conclusion. References.

Abbreviations in Biomedical Text ‑ Introduction. Identifying Abbreviations. Normalizing Abbreviations. Defining Abbreviations in Text. Abbreviation Databases. Conclusions. References.

Named Entity Recognition ‑ Introduction. Biomedical Named Entities. Issues in Gene/Protein Name Recognition. Approaches to Gene and Protein Name Recognition. Discussion. Conclusion. References.

Information Extraction ‑ Information Extraction: The Task. The Message Understanding Conferences. Approaches to Information Extraction in Biology. Conclusion. References.

Corpora and their Annotation ‑ Introduction. Literature Databases in Biology. Corpora. Corpus Annotation in Biology. Issues on Manual Annotation. Annotation Tools. Conclusion.

Evaluation of Text Mining in Biology ‑ Introduction. Why Evaluate? What to Evaluate? Current Assessments for Text Mining in Biology. What Next? References.

Integrating Text Mining with Data Mining ‑ Introduction: Biological Sequence Analysis and Text Mining. Gene Expression Analysis and Text Mining. Conclusion. References.

商品描述(中文翻譯)

**描述**

這是一本專注於生物文本挖掘技術與工具的首本專著,將最前沿的技術與工具盡在掌握之中。本書全面描述了自然語言處理(NLP)的方法及其在生物領域的應用,詳細說明了各種詞彙、術語和本體資源,並教你如何最佳利用這些資源。

你將看到術語管理工具如術語提取和術語結構化如何促進有效的挖掘,並學習如何輕鬆識別生物醫學命名實體和縮寫。本書提供逐步指導,實施各種生物應用的信息提取方法,從模式匹配和完整解析方法到子語言和本體驅動的提取技術。它討論了如何充分利用文本集合,並在文本挖掘應用中有效使用語料庫和語料標註,還提供了評估和優化文本挖掘系統的經過驗證的指導。最後,本書還介紹了整合文本挖掘和數據挖掘的技術,以進一步促進生物分析。

這本首創的著作不僅是對當前技術的批判性回顧,也是一本充滿實地驗證專業知識和建議的解決方案導向指南,無論你是對生物醫學文獻的文本挖掘有著豐富經驗,還是對這個領域完全陌生,這本書都將是不可或缺的。

**目錄**

生物學與生物醫學的文本挖掘介紹 - 文本挖掘:目標、挑戰與解決方案。本書大綱。參考文獻。

自然語言處理的文本挖掘層次 - 介紹。自然語言處理的詞彙層次。自然語言處理的句法層次。自然語言處理的語義層次。文本挖掘的自然語言系統架構。結論與展望。參考文獻。

生物文本挖掘的詞彙、術語和本體資源 - 介紹。擴展範例。詞彙資源。術語資源。本體資源。與實體識別相關的問題。與關係提取相關的問題。結論。參考文獻。

生物醫學中的自動術語管理 - 介紹。生物醫學中的術語資源。自動術語管理。自動術語識別。處理術語變異和歧義。自動術語結構化。自動術語管理系統的範例。結論。參考文獻。

生物醫學文本中的縮寫 - 介紹。識別縮寫。標準化縮寫。文本中的縮寫定義。縮寫數據庫。結論。參考文獻。

命名實體識別 - 介紹。生物醫學命名實體。基因/蛋白質名稱識別中的問題。基因和蛋白質名稱識別的方法。討論。結論。參考文獻。

信息提取 - 信息提取:任務。信息理解會議。生物學中的信息提取方法。結論。參考文獻。

語料庫及其標註 - 介紹。生物學中的文獻數據庫。語料庫。生物學中的語料標註。手動標註的問題。標註工具。結論。

生物學中文本挖掘的評估 - 介紹。為什麼要評估?評估什麼?當前對生物學中文本挖掘的評估。接下來該怎麼辦?參考文獻。

將文本挖掘與數據挖掘整合 - 介紹:生物序列分析與文本挖掘。基因表達分析與文本挖掘。結論。參考文獻。