New Classification Method Based on Modular Neural Networks with the LVQ Algorithm and Type-2 Fuzzy Logic (SpringerBriefs in Applied Sciences and Technology)
暫譯: 基於模組神經網絡的新的分類方法:LVQ演算法與二型模糊邏輯(應用科學與技術系列)

Jonathan Amezcua

  • 出版商: Springer
  • 出版日期: 2018-02-15
  • 售價: $2,390
  • 貴賓價: 9.5$2,271
  • 語言: 英文
  • 頁數: 84
  • 裝訂: Paperback
  • ISBN: 3319737724
  • ISBN-13: 9783319737720
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

In this book a new model for data classification was developed. This new model is based on the competitive neural network Learning Vector Quantization (LVQ) and type-2 fuzzy logic.  This computational model consists of the hybridization of the aforementioned techniques, using a fuzzy logic system within the competitive layer of the LVQ network to determine the shortest distance between a centroid and an input vector. This new model is based on a modular LVQ architecture to further improve its performance on complex classification problems. It also implements a data-similarity process for preprocessing the datasets, in order to build dynamic architectures, having the classes with the highest degree of similarity in different modules. Some architectures were developed in order to work mainly with two datasets, an arrhythmia dataset (using ECG signals) for classifying 15 different types of arrhythmias, and a satellite images segments dataset used for classifying six different types of soil. Both datasets show interesting features that makes them interesting for testing new classification methods.

 

商品描述(中文翻譯)

在本書中,開發了一種新的數據分類模型。這個新模型基於競爭神經網絡學習向量量化(Learning Vector Quantization, LVQ)和二型模糊邏輯。這個計算模型由上述技術的混合組成,使用模糊邏輯系統在LVQ網絡的競爭層中來確定質心與輸入向量之間的最短距離。這個新模型基於模塊化的LVQ架構,以進一步提高其在複雜分類問題上的性能。它還實現了一個數據相似性處理過程,用於預處理數據集,以構建動態架構,將具有最高相似度的類別放在不同的模塊中。開發了一些架構,主要用於處理兩個數據集,一個是心律不整數據集(使用心電圖信號)用於分類15種不同類型的心律不整,另一個是衛星影像片段數據集,用於分類六種不同類型的土壤。這兩個數據集顯示出有趣的特徵,使其成為測試新分類方法的理想選擇。

最後瀏覽商品 (20)