Deep Neuro-Fuzzy Systems with Python: With Case Studies and Applications from the Industry
暫譯: 使用 Python 的深度神經模糊系統:來自業界的案例研究與應用

Singh, Himanshu, Lone, Yunis Ahmad

  • 出版商: Apress
  • 出版日期: 2019-12-01
  • 定價: $1,510
  • 售價: 8.0$1,208
  • 語言: 英文
  • 頁數: 260
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484253604
  • ISBN-13: 9781484253601
  • 相關分類: Python程式語言
  • 立即出貨 (庫存=1)

商品描述

Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python.

You'll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You'll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them.

In the last section of the book you'll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You'll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications.

What You'll Learn

  • Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inference
  • Review neural networks, back propagation, and optimization
  • Work with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations
  • Apply Python implementations of deep neuro fuzzy system

Who This book Is For

Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.

商品描述(中文翻譯)

獲得模糊邏輯和神經網絡的深入了解,以及這兩種模型之間的整合如何在當今世界中構建智能系統。本書簡化了使用 Python 實現模糊邏輯和神經網絡概念的過程。

您將從模糊集合和關係的基本概念開始,了解每個集合成員擁有自己的隸屬函數值。您還將探討已開發的不同架構和模型,以及如何定義規則和推理以使這些架構成為可能。本書接著深入探討神經網絡及其相關架構,重點關注神經網絡在訓練過程中可能遇到的各種問題,以及不同的優化方法如何幫助您解決這些問題。

在本書的最後一部分,您將檢視模糊邏輯和神經網絡的整合、自適應神經模糊推理系統,以及與之相關的各種近似方法。您將回顧不同類型的深度神經模糊分類器、模糊神經元,以及神經網絡的自適應學習能力。本書最後回顧了先進的神經模糊模型和應用。

您將學到的內容:
- 理解模糊邏輯、隸屬函數、模糊關係和模糊推理
- 回顧神經網絡、反向傳播和優化
- 使用不同的架構,如 Takagi-Sugeno 模型、混合模型、遺傳算法和近似方法
- 應用深度神經模糊系統的 Python 實現

本書適合對象:
對機器學習有基本了解的數據科學家和軟體工程師,想要擴展到深度學習和模糊邏輯的混合應用。

作者簡介

Himanshu Singh is currently a Consultant to Artificial Intelligence for ADP Inc. with over 5 years of experience in the AI industry, primarily in Computer Vision and Natural Language Processing. Himanshu has authored three books on Machine Learning. He has an MBA from Narsee Monjee Institute of Management Studies, and a postgraduate diploma in Applied Statistics.

Yunis Ahmad Lone has over 22 years of experience in the IT industry, has been involved with Machine Learning for 10 years. Currently, Yunis is a PhD researcher at Trinity College, Dublin, Ireland. Yunis completed his Bachelors and Masters both from BITS Pilani, and worked on various leadership positions in MNCs like Tata Consultancy Services, Deloitte, and Fidelity Investments.

作者簡介(中文翻譯)

Himanshu Singh目前是ADP Inc.的人工智慧顧問,擁有超過5年的AI產業經驗,主要專注於計算機視覺和自然語言處理。Himanshu已經撰寫了三本有關機器學習的書籍。他擁有Narsee Monjee管理學院的MBA學位,以及應用統計的研究生文憑。

Yunis Ahmad Lone在IT產業擁有超過22年的經驗,並且在機器學習領域工作了10年。目前,Yunis是愛爾蘭都柏林三一學院的博士研究生。Yunis在比特斯皮拉尼(BITS Pilani)完成了他的學士和碩士學位,並在Tata Consultancy Services、Deloitte和Fidelity Investments等跨國公司擔任過多個領導職位。

最後瀏覽商品 (20)