Deep Learning Classifiers with Memristive Networks: Theory and Applications
暫譯: 記憶電阻網路的深度學習分類器:理論與應用
James, Alex Pappachen
- 出版商: Springer
- 出版日期: 2019-04-17
- 售價: $7,920
- 貴賓價: 9.5 折 $7,524
- 語言: 英文
- 頁數: 213
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030145220
- ISBN-13: 9783030145224
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
商品描述(中文翻譯)
本書向讀者介紹深度神經網絡架構的基本原理,特別強調記憶電阻電路和系統。首先,本書提供神經記憶系統的概述,包括記憶電阻器裝置、模型和理論,以及對深度學習神經網絡的介紹,如多層網絡、卷積神經網絡、層次時間記憶(Hierarchical Temporal Memory)、長短期記憶(Long Short Term Memory)和深度神經模糊網絡。接著,本書詳細聚焦於使用記憶電阻交叉架構設計這些神經網絡。本書將理論與神經記憶電路和系統的各種應用相結合,並提供有關設計、評估技術和不同深度神經網絡架構實現的各種問題的入門教程。