商品描述
From theory to techniques, the first all-in-one resource for EIS
There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications.
-
Explains the following fundamental approaches for developing evolving intelligent systems (EIS):
- the Hierarchical Prioritized Structure
-
the Participatory Learning Paradigm
-
the Evolving Takagi-Sugeno fuzzy systems (eTS+)
-
the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm
-
Emphasizes the importance and increased interest in online processing of data streams
-
Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation
-
Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems
-
Introduces an integrated approach to incremental (real-time) feature extraction and classification
-
Proposes a study on the stability of evolving neuro-fuzzy recurrent networks
-
Details methodologies for evolving clustering and classification
-
Reveals different applications of EIS to address real problems in areas of:
-
evolving inferential sensors in chemical and petrochemical industry
-
learning and recognition in robotics
-
-
Features downloadable software resources
Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.
商品描述(中文翻譯)
從理論到技術,首部全方位資源針對演變智能系統(EIS)
在先進的流程工業、國防以及網際網路和通訊(VoIP)應用中,對於智能且具適應性/演變系統的需求非常明顯。《演變智能系統》是首部完整涵蓋這一新概念的專著,從系統方法論到案例研究再到工業應用,無所不包。本書由全球領先的專家撰寫各章,探討了這一新興研究領域的進展、趨勢和主要成就,強調新穎理論結果與實際應用之間的平衡。
- 解釋了開發演變智能系統(EIS)的以下基本方法:
- 階層優先結構
- 參與式學習範式
- 演變的高橋-菅野模糊系統(eTS+)
- 源自知名的Gustafson-Kessel離線聚類算法的演變聚類算法
- 強調在線處理數據流的重要性和日益增長的興趣
- 概述了使用模糊動態聚類作為可演變信息粒化基礎的一般策略
- 提出了一種開發穩健且可解釋的演變模糊規則系統的方法論
- 介紹了一種增量(實時)特徵提取和分類的綜合方法
- 提出對演變神經模糊遞歸網絡穩定性的研究
- 詳細說明了演變聚類和分類的方法論
- 揭示了EIS在以下領域解決實際問題的不同應用:
- 化學和石油化工行業中的演變推理傳感器
- 機器人中的學習和識別
- 提供可下載的軟體資源
《演變智能系統》是計算機科學家、工程師、研究人員、應用數學家、機器學習和數據挖掘專家、研究生及專業人士的理論與實踐問題的一站式參考指南。