Machine Learning for Text
暫譯: 文本的機器學習
Charu C. Aggarwal
- 出版商: Springer
- 出版日期: 2018-04-03
- 定價: $2,980
- 售價: 8.0 折 $2,384
- 語言: 英文
- 頁數: 493
- 裝訂: Hardcover
- ISBN: 3319735306
- ISBN-13: 9783319735306
-
相關分類:
Machine Learning
-
相關翻譯:
文本機器學習 (簡中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$880$695 -
$550$435 -
$1,362Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$680$530 -
$780$741 -
$580$493 -
$480$408 -
$580$493 -
$580$493 -
$560$442 -
$580$452 -
$500$390 -
$780$616 -
$520$406 -
$1,000$790 -
$2,660Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Nlp, and Transformers Using Tensorflow (Paperback)
-
$880$616 -
$599$473 -
$680$510 -
$560$437 -
$680$537 -
$580$458 -
$1,200$948 -
$600$300 -
$880$695
相關主題
商品描述
Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:
- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.
- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods.
- Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection.
This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop).
This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
商品描述(中文翻譯)
文本分析是一個位於資訊檢索、機器學習和自然語言處理交界處的領域,本教科書仔細涵蓋了從這些交叉主題中提煉出的有條理的框架。本教科書的章節分為三個類別:
**- 基本演算法:** 第1至第7章討論了從文本中進行機器學習的經典演算法,如預處理、相似度計算、主題建模、矩陣分解、聚類、分類、回歸和集成分析。
**- 領域敏感挖掘:** 第8和第9章討論了當文本與不同領域(如多媒體和網路)結合時的學習方法。資訊檢索和網路搜尋的問題也在其與排名和機器學習方法的關係背景下進行討論。
**- 序列中心挖掘:** 第10至第14章討論了各種序列中心和自然語言應用,如特徵工程、神經語言模型、深度學習、文本摘要、資訊提取、情感分析、文本分段和事件檢測。
本教科書詳細涵蓋了文本的機器學習主題。由於內容廣泛,可以根據課程級別從同一本書中提供多個課程。儘管呈現方式以文本為中心,第3至第7章涵蓋了通常用於文本數據以外領域的機器學習演算法。因此,本書不僅可以用於文本分析課程,還可以從更廣泛的機器學習(以文本為背景)的角度提供課程。
本教科書的目標讀者為計算機科學的研究生,以及在這些相關領域工作的研究人員、教授和業界從業人員。本教科書附有解答手冊以供課堂教學使用。