Survey of Text Mining II: Clustering, Classification, and Retrieval

***

  • 出版商: Springer
  • 出版日期: 2008-03-11
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Hardcover
  • ISBN: 1848000456
  • ISBN-13: 9781848000452
  • 相關分類: Text-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Description

The proliferation of digital computing devices and their use in communication has resulted in an increased demand for systems and algorithms capable of mining textual data. Thus, the development of techniques for mining unstructured, semi-structured, and fully-structured textual data has become increasingly important in both academia and industry.

This second volume continues to survey the evolving field of text mining - the application of techniques of machine learning, in conjunction with natural language processing, information extraction and algebraic/mathematical approaches, to computational information retrieval. Numerous diverse issues are addressed, ranging from the development of new learning approaches to novel document clustering algorithms, collectively spanning several major topic areas in text mining.

Features:

• Acts as an important benchmark in the development of current and future approaches to mining textual information

• Serves as an excellent companion text for courses in text and data mining, information retrieval and computational statistics

• Experts from academia and industry share their experiences in solving large-scale retrieval and classification problems

• Presents an overview of current methods and software for text mining

• Highlights open research questions in document categorization and clustering, and trend detection

• Describes new application problems in areas such as email surveillance and anomaly detection

Survey of Text Mining II offers a broad selection in state-of-the art algorithms and software for text mining from both academic and industrial perspectives, to generate interest and insight into the state of the field. This book will be an indispensable resource for researchers, practitioners, and professionals involved in information retrieval, computational statistics, and data mining.

Michael W. Berry is a professor in the Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville.

Malu Castellanos is a senior researcher at Hewlett-Packard Laboratories in Palo Alto, California.

商品描述(中文翻譯)

**描述**

數位計算設備的普及及其在通信中的應用,導致對能夠挖掘文本數據的系統和算法需求增加。因此,開發用於挖掘非結構化、半結構化和完全結構化文本數據的技術在學術界和產業界變得越來越重要。

本卷繼續調查不斷發展的文本挖掘領域——即將機器學習技術與自然語言處理、信息提取及代數/數學方法結合應用於計算信息檢索。涉及的議題多樣,從新學習方法的開發到新穎的文檔聚類算法,涵蓋了文本挖掘中的幾個主要主題領域。

**特色:**

- 作為當前和未來文本信息挖掘方法發展的重要基準
- 作為文本和數據挖掘、信息檢索及計算統計課程的優秀輔助教材
- 學術界和產業界的專家分享他們在解決大規模檢索和分類問題方面的經驗
- 提供當前文本挖掘方法和軟體的概述
- 突出文檔分類、聚類及趨勢檢測中的開放研究問題
- 描述電子郵件監控和異常檢測等領域的新應用問題

《文本挖掘調查 II》提供了來自學術界和產業界的最新算法和軟體的廣泛選擇,以激發對該領域現狀的興趣和洞察。這本書將成為從事信息檢索、計算統計和數據挖掘的研究人員、實務工作者和專業人士不可或缺的資源。

Michael W. Berry 是田納西大學諾克斯維爾分校電機工程與計算機科學系的教授。

Malu Castellanos 是位於加州帕洛阿爾托的惠普實驗室的高級研究員。