Feature Engineering for Machine Learning and Data Analytics (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
暫譯: 機器學習與數據分析的特徵工程(Chapman & Hall/CRC 數據挖掘與知識發現系列)
- 出版商: CRC
- 出版日期: 2018-04-04
- 售價: $4,910
- 貴賓價: 9.5 折 $4,665
- 語言: 英文
- 頁數: 418
- 裝訂: Hardcover
- ISBN: 1138744387
- ISBN-13: 9781138744387
-
相關分類:
Machine Learning、Data Science、Data-mining
海外代購書籍(需單獨結帳)
商品描述
Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation.
The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features.
The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively.
This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.
商品描述(中文翻譯)
特徵工程在大數據分析中扮演著至關重要的角色。機器學習和數據挖掘算法無法在沒有數據的情況下運作。如果用來表示基礎數據對象的特徵很少,那麼所能達成的成果也會有限,而這些算法的結果質量在很大程度上取決於可用特徵的質量。《機器學習與數據分析的特徵工程》提供了特徵工程的全面介紹,包括特徵生成、特徵提取、特徵轉換、特徵選擇以及特徵分析和評估。
本書介紹了關鍵概念、方法、範例和應用,並包含針對主要數據類型(如文本、圖像、序列、時間序列、圖形、串流數據、軟體工程數據、Twitter數據和社交媒體數據)的特徵工程章節。它還包含通用的特徵生成方法,以及生成經過驗證的、手工製作的、特定領域的特徵的方法。
第一章定義了特徵和特徵工程的概念,提供了本書的概述,並指引讀者了解本書未涵蓋的主題。接下來的六章專注於特徵工程,包括針對特定數據類型的特徵生成。隨後的四章涵蓋了特徵工程的通用方法,即特徵選擇、基於特徵轉換的特徵工程、基於深度學習的特徵工程,以及基於模式的特徵生成和工程。最後三章分別討論了社交機器人檢測、軟體管理和基於Twitter的應用的特徵工程。
本書可作為數據分析師、大數據科學家、數據預處理工作者、專案經理、專案開發者、預測模型建構者、教授、研究人員、研究生及高年級本科生的參考資料。它也可以作為特徵工程課程的主要教材,或作為機器學習、數據挖掘和大數據分析課程的補充教材。