An Introduction to Machine Learning 2/e
暫譯: 機器學習導論 (第二版)
Miroslav Kubat
- 出版商: Springer
- 出版日期: 2017-09-08
- 定價: $2,800
- 售價: 6.0 折 $1,680
- 語言: 英文
- 頁數: 348
- 裝訂: Hardcover
- ISBN: 3319639129
- ISBN-13: 9783319639123
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習導論(原書第2版) (簡中版)
-
其他版本:
An Introduction to Machine Learning 3/e
買這商品的人也買了...
-
$580$493 -
$1,000$900 -
$250超標量處理器設計
-
$2,240An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$1745G 物聯網及 NB-IoT 技術詳解
-
$163給孩子的人工智能圖解
-
$594$564 -
$356機器學習導論(原書第2版)
-
$650$553 -
$420$331 -
$300$255 -
$520$442 -
$280特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$680$578 -
$480$379 -
$880$695 -
$380$342 -
$580$458 -
$680$476 -
$690$345 -
$1,656Introduction to Machine Learning, 4/e (Hardcover)
-
$378產品經理方法論 構建完整的產品知識體系
-
$500$330 -
$760$380 -
$327AI Agent:AI的下一個風口
相關主題
商品描述
This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.
This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.
商品描述(中文翻譯)
這本教科書以易於理解的方式介紹了基本的機器學習概念,提供實用的建議,使用簡單明瞭的範例,並對相關應用進行引人入勝的討論。主要主題包括貝葉斯分類器(Bayesian classifiers)、最近鄰分類器(nearest-neighbor classifiers)、線性和多項式分類器(linear and polynomial classifiers)、決策樹(decision trees)、神經網絡(neural networks)和支持向量機(support vector machines)。後面的章節展示了如何通過「提升」(boosting)來結合這些簡單工具,如何在更複雜的領域中利用它們,以及如何處理各種先進的實際問題。其中一章專門介紹了流行的遺傳算法(genetic algorithms)。
本修訂版包含三個全新的章節,探討有關機器學習在工業中實用應用的關鍵主題。這些章節研究多標籤領域(multi-label domains)、無監督學習(unsupervised learning)及其在深度學習中的應用,以及邏輯推理的歸納方法。許多章節已擴展,材料的呈現也得到了增強。本書包含許多新的練習題、眾多已解答的範例、引人深思的實驗以及獨立工作的計算機作業。