An Introduction to Machine Learning

Miroslav Kubat

相關主題

商品描述

This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms.

商品描述(中文翻譯)

本書以易於理解的方式介紹機器學習的基本概念,提供實用的建議,使用簡單的範例,並透過有趣的應用討論來激勵學生。主要主題包括貝葉斯分類器、最近鄰分類器、線性和多項式分類器、決策樹、神經網絡以及支持向量機。後面的章節展示了如何通過“增強”來結合這些簡單的工具,如何在更複雜的領域中利用它們,以及如何處理各種先進的實際問題。其中一章專門介紹流行的遺傳算法。