An Introduction to Statistical Learning: With Applications in R (Hardcover)
暫譯: 統計學習導論:R語言應用實例

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

買這商品的人也買了...

相關主題

商品描述

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

商品描述(中文翻譯)

《統計學習導論》提供了統計學習領域的易懂概述,這是一套對於理解過去二十年在生物學、金融、行銷到天體物理等領域出現的龐大且複雜數據集的必要工具。本書介紹了一些最重要的建模和預測技術,以及相關的應用。主題包括線性回歸、分類、重抽樣方法、收縮方法、基於樹的方法、支持向量機、聚類等。書中使用彩色圖形和真實世界的例子來說明所介紹的方法。由於這本教科書的目標是促進科學、工業及其他領域的實務工作者使用這些統計學習技術,因此每一章都包含了在 R 這個極受歡迎的開源統計軟體平台上實施所介紹的分析和方法的教程。

兩位作者共同撰寫了《統計學習的元素》(Hastie, Tibshirani 和 Friedman,第二版 2009),這是一本受歡迎的統計和機器學習研究者的參考書。《統計學習導論》涵蓋了許多相同的主題,但以更廣泛的受眾能夠理解的水平進行介紹。本書的目標讀者是希望使用尖端統計學習技術來分析數據的統計學家和非統計學家。文本僅假設讀者具備線性回歸的先修課程,並不需要具備矩陣代數的知識。