System Identification and Adaptive Control: Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models (Advances in Industrial Control)
暫譯: 系統辨識與自適應控制:神經模糊與模糊認知網路模型的理論與應用(工業控制進展)

Yiannis Boutalis

  • 出版商: Springer
  • 出版日期: 2016-09-03
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 328
  • 裝訂: Paperback
  • ISBN: 3319354124
  • ISBN-13: 9783319354125
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in:

•             contemporary power generation;

•             process control and

•             conventional benchmarking problems.

Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

商品描述(中文翻譯)

本專著介紹了智能系統在工程領域的當前發展趨勢和應用,重點關注系統識別和控制的最新研究成果。文中介紹了重複神經模糊(recurrent neurofuzzy)和模糊認知網絡(Fuzzy Cognitive Network, FCN)模型。這兩種模型適用於部分已知或未知的複雜時變系統。神經模糊自適應控制(Neurofuzzy Adaptive Control)包含了其陳述的嚴謹證明,這些證明導致了對所提出算法設計參數選擇的具體結論。神經模糊模型結合了模糊系統和重複高階神經網絡的概念,以產生強大的系統近似,這些近似用於自適應控制。FCN模型源自模糊認知圖,利用“概念”及其因果關係的概念來捕捉複雜系統的行為。本書展示了在適當的訓練算法的幫助下,這些模型是適合用於工程系統的強大系統模擬器。所有章節均由示範性模擬實驗支持,而單獨的章節則專門討論每個模型的潛在工業應用,包括以下項目:

• 當代電力生成;

• 過程控制;

• 傳統基準測試問題。

從事自適應估計和智能控制的研究人員和研究生將會對《神經模糊自適應控制》感興趣,因為其模型的現實性以及它展示了這些模型對實際系統的相關性。本專著還向工業工程師展示了如何利用經過驗證的理論結果輕鬆測試智能自適應控制。