Neuro-Fuzzy Equalizers for Mobile Cellular Channels
暫譯: 行動蜂巢通道的神經模糊均衡器
K.C. Raveendranathan
- 出版商: CRC
- 出版日期: 2017-04-06
- 售價: $2,800
- 貴賓價: 9.5 折 $2,660
- 語言: 英文
- 頁數: 236
- 裝訂: Paperback
- ISBN: 1138076600
- ISBN-13: 9781138076600
海外代購書籍(需單獨結帳)
商品描述
Equalizers are present in all forms of communication systems. Neuro-Fuzzy Equalizers for Mobile Cellular Channels details the modeling of a mobile broadband communication channel and designing of a neuro-fuzzy adaptive equalizer for it. This book focuses on the concept of the simulation of wireless channel equalizers using the adaptive-network-based fuzzy inference system (ANFIS). The book highlights a study of currently existing equalizers for wireless channels. It discusses several techniques for channel equalization, including the type-2 fuzzy adaptive filter (type-2 FAF), compensatory neuro-fuzzy filter (CNFF), and radial basis function (RBF) neural network.
Neuro-Fuzzy Equalizers for Mobile Cellular Channels
starts with a brief introduction to channel equalizers, and the nature of mobile cellular channels with regard to the frequency reuse and the resulting CCI. It considers the many channel models available for mobile cellular channels, establishes the mobile indoor channel as a Rayleigh fading channel, presents the channel equalization problem, and focuses on various equalizers for mobile cellular channels. The book discusses conventional equalizers like LE and DFE using a simple LMS algorithm and transversal equalizers. It also covers channel equalization with neural networks and fuzzy logic, and classifies various equalizers.This being a fairly new branch of study, the book considers in detail the concept of fuzzy logic controllers in noise cancellation problems and provides the fundamental concepts of neuro-fuzzy. The final chapter offers a recap and explores venues for further research. This book also establishes a common mathematical framework of the equalizers using the RBF model and develops a mathematical model for ultra-wide band (UWB) channels using the channel co-variance matrix (CCM).
- Introduces the novel concept of the application of adaptive-network-based fuzzy inference system (ANFIS) in the design of wireless channel equalizers
- Provides model ultra-wide band (UWB) channels using channel co-variance matrix
- Offers a formulation of a unified radial basis function (RBF) framework for ANFIS-based and fuzzy adaptive filter (FAF) Type II, as well as compensatory neuro-fuzzy equalizers
- Includes extensive use of MATLAB® as the simulation tool in all the above cases
商品描述(中文翻譯)
平衡器在所有形式的通信系統中都存在。《移動蜂窩通道的神經模糊平衡器》詳細介紹了移動寬頻通信通道的建模以及為其設計的神經模糊自適應平衡器。本書專注於使用自適應網絡基於模糊推理系統(ANFIS)模擬無線通道平衡器的概念。書中強調了目前存在的無線通道平衡器的研究,並討論了幾種通道均衡技術,包括類型2模糊自適應濾波器(type-2 FAF)、補償神經模糊濾波器(CNFF)和徑向基函數(RBF)神經網絡。
《移動蜂窩通道的神經模糊平衡器》以簡要介紹通道平衡器開始,並探討移動蜂窩通道的特性,特別是頻率重用及其導致的同頻干擾(CCI)。它考慮了多種可用的移動蜂窩通道模型,將移動室內通道確立為瑞利衰落通道,提出通道均衡問題,並專注於各種移動蜂窩通道的平衡器。書中討論了使用簡單的最小均方(LMS)算法和橫向平衡器的傳統平衡器,如LE和DFE。它還涵蓋了使用神經網絡和模糊邏輯的通道均衡,並對各種平衡器進行分類。
由於這是一個相對較新的研究領域,本書詳細考慮了模糊邏輯控制器在噪聲消除問題中的概念,並提供了神經模糊的基本概念。最後一章提供了回顧並探討了進一步研究的方向。本書還使用RBF模型建立了平衡器的共同數學框架,並利用通道協方差矩陣(CCM)為超寬頻(UWB)通道開發數學模型。
- 介紹了自適應網絡基於模糊推理系統(ANFIS)在無線通道平衡器設計中的新穎應用概念
- 提供了使用通道協方差矩陣的超寬頻(UWB)通道模型
- 提供了統一的徑向基函數(RBF)框架的公式,適用於基於ANFIS的模糊自適應濾波器(FAF)類型II,以及補償神經模糊平衡器
- 在上述所有情況中廣泛使用MATLAB®作為模擬工具