Data Mining: The Textbook (Hardcover)
Charu C. Aggarwal
- 出版商: Springer
- 出版日期: 2015-04-27
- 定價: $3,150
- 售價: 9.5 折 $2,993
- 語言: 英文
- 頁數: 734
- 裝訂: Hardcover
- ISBN: 3319141414
- ISBN-13: 9783319141411
-
相關分類:
Data-mining
-
相關翻譯:
數據挖掘:原理與實踐(進階篇) (簡中版)
-
其他版本:
Data Mining: The Textbook(Softcover reprint of the original 1st ed. 2015 Edition)
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
$990$891 -
$4,510$4,285 -
$780$663 -
$580$452 -
$780$616 -
$780$616 -
$360$284 -
$580$452 -
$2,800Computer Vision Metrics: Textbook (Hardcover)
-
$720$562 -
$690$538 -
$590$502 -
$1,617Deep Learning (Hardcover)
-
$147數學之美, 2/e
-
$520$442 -
$500$395 -
$360$281 -
$580$458 -
$780$616 -
$790$616 -
$450$356 -
$590$460 -
$390$332 -
$580$458 -
$2,010$1,910
相關主題
商品描述
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories:
- Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems.
- Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data.
- Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor.
Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples.
Praise for Data Mining: The Textbook -
“As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology
"This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago
商品描述(中文翻譯)
這本教科書探討了從基礎到複雜數據類型及其應用的數據挖掘不同方面,涵蓋了數據挖掘問題的廣泛多樣性。它超越了傳統對數據挖掘問題的關注,引入了高級數據類型,如文本、時間序列、離散序列、空間數據、圖形數據和社交網絡。迄今為止,還沒有一本書以全面且整合的方式涵蓋了所有這些主題。本書的章節分為三個類別:
基礎章節:數據挖掘有四個主要問題,對應於聚類、分類、關聯模式挖掘和異常值分析。這些章節全面討論了這些問題的各種方法。
領域章節:這些章節討論了用於不同數據領域的特定方法,如文本數據、時間序列數據、序列數據、圖形數據和空間數據。
應用章節:這些章節研究了重要的應用,如流式數據挖掘、網絡挖掘、排名、推薦、社交網絡和隱私保護。領域章節也具有應用的特色。
《數據挖掘:教科書》適用於入門和高級數據挖掘課程,平衡了數學細節和直觀理解。它包含了教授和研究人員所需的數學細節,但以簡單直觀的風格呈現,以提高學生和工業從業人員(包括數學基礎有限的人)的可讀性。書中包含了大量的插圖、例子和練習,強調了語義可解釋的例子。
對《數據挖掘:教科書》的讚譽:
「當我閱讀這本書時,我已經決定在我的課堂上使用它。這是一本由一位傑出的研究人員撰寫的書,他在數據挖掘方面做出了基礎性的貢獻,以一種既易於理解又最新的方式呈現。這本書包含了理論和實際應用案例。對於學生和教授來說,這是一本必不可少的書!」——楊強,香港科技大學計算機科學與工程系主任
「這是一本關於數據挖掘最令人驚嘆和全面的教科書。它不僅涵蓋了基礎問題,如聚類、分類、異常值和頻繁模式,還涵蓋了各種數據類型,包括文本、時間序列、序列、空間數據和圖形,以及各種應用,如推薦系統、網絡、社交網絡和隱私保護。這是一本適合研究生和研究人員以及從業人員的好書。」——Philip S. Yu,芝加哥伊利諾伊大學UIC杰出教授和Wexler信息技術講座教授