Data Classification: Algorithms and Applications (Hardcover)
暫譯: 數據分類:演算法與應用(精裝版)

Charu C. Aggarwal

  • 出版商: CRC
  • 出版日期: 2014-07-25
  • 售價: $3,500
  • 貴賓價: 9.5$3,325
  • 語言: 英文
  • 頁數: 707
  • 裝訂: Hardcover
  • ISBN: 1466586745
  • ISBN-13: 9781466586741
  • 相關分類: Algorithms-data-structures
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

商品描述

Comprehensive Coverage of the Entire Area of Classification

Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data.

This comprehensive book focuses on three primary aspects of data classification:

  • Methods-The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks.
  • Domains-The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm.
  • Variations-The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

商品描述(中文翻譯)

全面涵蓋分類領域的所有範疇

分類問題的研究往往在模式識別、資料庫、資料探勘和機器學習等領域中呈現出碎片化的狀態。資料分類:演算法與應用 以統一的方式探討這些不同社群的工作,深入分析分類的基本演算法以及在多種問題領域中的應用,包括文本、多媒體、社交網路和生物資料。

這本全面的書籍專注於資料分類的三個主要方面:



  • 方法-本書首先描述用於分類的常見技術,包括機率方法、決策樹、基於規則的方法、基於實例的方法、支持向量機方法和神經網絡。


  • 領域-接著,本書檢視用於特定資料領域的方法,如多媒體、文本、時間序列、網路、離散序列和不確定資料。由於大數據範式的近期重要性,它還涵蓋了大型資料集和資料流。


  • 變化-本書最後提供了對分類過程變化的見解。它討論了集成學習、稀有類別學習、距離函數學習、主動學習、視覺學習、遷移學習和半監督學習,以及分類器的評估方面。