Outlier Analysis (Paperback)
暫譯: 異常值分析 (平裝本)
Charu Aggarwal
- 出版商: Springer
- 出版日期: 2015-06-25
- 售價: $4,850
- 貴賓價: 9.5 折 $4,608
- 語言: 英文
- 頁數: 464
- 裝訂: Paperback
- ISBN: 1489987568
- ISBN-13: 9781489987563
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$450$356 -
$2,057Security Patterns in Practice: Designing Secure Architectures Using Software Patterns (Hardcover)
-
$950$903 -
$680$537 -
$680$537 -
$480$379 -
$450$356 -
$180計算機是怎樣跑起來的 (How Computer Works)
-
$360$284 -
$600$570 -
$709Windows內核安全與驅動開發(含CD光盤1張)
-
$580$522 -
$690$538 -
$403數據科學中的R語言
-
$500$450 -
$580$458 -
$403樹之禮讚:信息可視化方法與案例解析
-
$699$552 -
$560$442 -
$650$507 -
$500$395 -
$820$648 -
$520$411 -
$620$527 -
$250區塊鏈: 價值因特網的基石
商品描述
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.
商品描述(中文翻譯)
隨著硬體技術在數據收集方面的持續進步,以及軟體技術(資料庫)在數據組織方面的發展,計算機科學家越來越多地參與到異常分析領域的最新進展中。計算機科學家特別是基於他們在管理大量數據方面的實踐經驗來接觸這一領域,並且假設較少——數據可以是任何類型的,無論是結構化還是非結構化,並且可能非常龐大。異常分析 是一本全面的論述,為數據挖掘專家、統計學家和計算機科學家所理解。這本書經過精心組織,並強調簡化內容,以便學生和從業者也能受益。各章節通常涵蓋三個領域之一:異常分析中常用的方法和技術,例如線性方法、基於接近度的方法、子空間方法和監督方法;數據領域,例如文本、類別、混合屬性、時間序列、流式、離散序列、空間和網絡數據;以及這些方法在多個領域中的關鍵應用,如信用卡詐騙檢測、入侵檢測、醫療診斷、地球科學、網頁日誌分析和社交網絡分析等。