Data Mining: The Textbook (Hardcover)
暫譯: 資料探勘:教科書 (精裝版)

Charu C. Aggarwal

買這商品的人也買了...

商品描述

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories:

  • Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems.
  • Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data.
  • Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor.

Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples.

Praise for Data Mining: The Textbook -

“As I read through this book, I have already decided to use it in my classes.  This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date.  The book is complete with theory and practical use cases.  It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology

"This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy.  It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

商品描述(中文翻譯)

這本教科書探討了資料探勘的不同面向,從基本概念到複雜的資料類型及其應用,涵蓋了資料探勘問題的廣泛多樣性。它超越了傳統對資料探勘問題的關注,介紹了進階的資料類型,如文本、時間序列、離散序列、空間資料、圖形資料和社交網路。到目前為止,尚未有一本書能以全面且整合的方式處理所有這些主題。本書的章節分為三個類別:

- 基本章節:資料探勘有四個主要問題,分別對應於聚類、分類、關聯模式挖掘和異常分析。這些章節全面討論了針對這些問題的各種方法。
- 領域章節:這些章節討論了針對不同資料領域(如文本資料、時間序列資料、序列資料、圖形資料和空間資料)所使用的特定方法。
- 應用章節:這些章節研究了重要的應用,如串流挖掘、網路挖掘、排名、推薦、社交網路和隱私保護。領域章節也具有應用的特點。

《資料探勘:教科書》適合初學者和進階資料探勘課程,平衡了數學細節和直觀理解。它包含了教授和研究人員所需的數學細節,但以簡單且直觀的風格呈現,以提高學生和業界從業者(包括數學背景有限者)的可讀性。書中包含了大量的插圖、範例和練習,並強調語義可解釋的範例。

對《資料探勘:教科書》的讚譽 -

「在我閱讀這本書的過程中,我已經決定在我的課程中使用它。這是一本由一位在資料探勘領域做出根本貢獻的傑出研究者所撰寫的書,既易於理解又與時俱進。這本書理論與實際案例兼具,是學生和教授必備的書籍!」-- Qiang Yang,香港科技大學計算機科學與工程系主任

「這是一本最驚人且全面的資料探勘教科書。它不僅涵蓋了基本問題,如聚類、分類、異常值和頻繁模式,以及不同的資料類型,包括文本、時間序列、序列、空間資料和圖形,還涵蓋了各種應用,如推薦系統、網路、社交網路和隱私。這是一本非常適合研究生、研究人員以及實務工作者的好書。」-- Philip S. Yu,伊利諾伊大學芝加哥分校資訊科技的傑出教授及Wexler講座教授

最後瀏覽商品 (20)