Order Analysis, Deep Learning, and Connections to Optimization
暫譯: 順序分析、深度學習與優化的連結
Jahn, Johannes
- 出版商: Springer
- 出版日期: 2024-10-23
- 售價: $4,840
- 貴賓價: 9.5 折 $4,598
- 語言: 英文
- 頁數: 181
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3031674219
- ISBN-13: 9783031674211
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book introduces readers to order analysis and various aspects of deep learning, and describes important connections to optimization, such as nonlinear optimization as well as vector and set optimization. Besides a review of the essentials, this book consists of two main parts.
The first main part focuses on the introduction of order analysis as an application-driven theory, which allows to treat order structures with an analytical approach. Applications of order analysis to nonlinear optimization, as well as vector and set optimization with fixed and variable order structures, are discussed in detail. This means there are close ties to finance, operations research, and multicriteria decision making.
Deep learning is the subject of the second main part of this book. In addition to the usual basics, the focus is on gradient methods, which are investigated in the context of complex models with a large number of parameters. And a new fast variant of a gradient method is presented in this part. Finally, the deep learning approach is extended to data sets given by set-valued data. Although this set-valued approach is more computationally intensive, it has the advantage of producing more robust predictions.
This book is primarily intended for researchers in the fields of optimization, order theory, or artificial intelligence (AI), but it will also benefit graduate students with a general interest in these fields. The book assumes that readers have a basic understanding of functional analysis or at least basic analysis. By unifying and streamlining existing approaches, this work will also appeal to professionals seeking a comprehensive and straightforward perspective on AI or order theory approaches.
商品描述(中文翻譯)
本書向讀者介紹序分析及深度學習的各個方面,並描述與優化之間的重要聯繫,例如非線性優化以及向量和集合優化。除了對基本概念的回顧外,本書主要分為兩個部分。
第一部分專注於序分析的介紹,作為一種應用驅動的理論,這使得可以用分析的方法來處理序結構。詳細討論了序分析在非線性優化以及具有固定和變動序結構的向量和集合優化中的應用。這意味著與金融、運籌學和多準則決策制定有著密切的聯繫。
深度學習是本書的第二部分主題。除了通常的基礎知識外,重點放在梯度方法上,這些方法在具有大量參數的複雜模型中進行研究。本部分還介紹了一種新的快速梯度方法變體。最後,深度學習方法擴展到由集合值數據給出的數據集。儘管這種集合值方法計算上更為密集,但它的優勢在於能夠產生更穩健的預測。
本書主要針對優化、序理論或人工智慧(AI)領域的研究人員,但對於對這些領域有一般興趣的研究生也將有所裨益。本書假設讀者對函數分析或至少基礎分析有基本的理解。通過統一和簡化現有的方法,本書也將吸引尋求全面且簡明的人工智慧或序理論方法的專業人士。
作者簡介
Johannes Jahn is a retired university professor at the Department of Mathematics of the Friedrich-Alexander-University Erlangen-Nürnberg (Germany). His research interests are theory and numerical methods in nonlinear optimization, vector optimization and set optimization. Johannes Jahn is the editor of the book series on "Vector Optimization" published with Springer.
作者簡介(中文翻譯)
約翰內斯·雅恩(Johannes Jahn)是德國弗里德里希-亞歷山大大學(Friedrich-Alexander-University Erlangen-Nürnberg)數學系的退休大學教授。他的研究興趣包括非線性優化、向量優化和集合優化的理論與數值方法。約翰內斯·雅恩是與施普林格(Springer)出版的《向量優化》(Vector Optimization)書系的編輯。