The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python
暫譯: 強化學習的藝術:基礎、數學與 Python 實作

Hu, Michael

  • 出版商: Apress
  • 出版日期: 2023-12-09
  • 定價: $2,180
  • 售價: 9.5$2,071
  • 語言: 英文
  • 頁數: 307
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484296052
  • ISBN-13: 9781484296059
  • 相關分類: Python程式語言ReinforcementDeepLearning
  • 立即出貨 (庫存=1)

相關主題

商品描述

Unlock the full potential of reinforcement learning (RL), a crucial subfield of Artificial Intelligence, with this comprehensive guide. This book provides a deep dive into RL's core concepts, mathematics, and practical algorithms, helping you to develop a thorough understanding of this cutting-edge technology.

Beginning with an overview of fundamental concepts such as Markov decision processes, dynamic programming, Monte Carlo methods, and temporal difference learning, this book uses clear and concise examples to explain the basics of RL theory. The following section covers value function approximation, a critical technique in RL, and explores various policy approximations such as policy gradient methods and advanced algorithms like Proximal Policy Optimization (PPO).

 

This book also delves into advanced topics, including distributed reinforcement learning, curiosity-driven exploration, and the famous AlphaZero algorithm, providing readers with a detailed account of these cutting-edge techniques.

With a focus on explaining algorithms and the intuition behind them, The Art of Reinforcement Learning includes practical source code examples that you can use to implement RL algorithms. Upon completing this book, you will have a deep understanding of the concepts, mathematics, and algorithms behind reinforcement learning, making it an essential resource for AI practitioners, researchers, and students.

What You Will Learn

 

  • Grasp fundamental concepts and distinguishing features of reinforcement learning, including how it differs from other AI and non-interactive machine learning approaches
  • Model problems as Markov decision processes, and how to evaluate and optimize policies using dynamic programming, Monte Carlo methods, and temporal difference learning
  • Utilize techniques for approximating value functions and policies, including linear and nonlinear value function approximation and policy gradient methods
  • Understand the architecture and advantages of distributed reinforcement learning
  • Master the concept of curiosity-driven exploration and how it can be leveraged to improve reinforcement learning agents
  • Explore the AlphaZero algorithm and how it was able to beat professional Go players

 

Who This Book Is For

 

Machine learning engineers, data scientists, software engineers, and developers who want to incorporate reinforcement learning algorithms into their projects and applications.

商品描述(中文翻譯)

解鎖強化學習(Reinforcement Learning, RL)的全部潛力,這是人工智慧(Artificial Intelligence, AI)的一個關鍵子領域,透過這本全面的指南。本書深入探討了RL的核心概念、數學和實用算法,幫助您全面理解這項尖端技術。

本書首先概述了基本概念,如馬可夫決策過程(Markov Decision Processes)、動態規劃(Dynamic Programming)、蒙地卡羅方法(Monte Carlo Methods)和時間差學習(Temporal Difference Learning),並使用清晰簡潔的範例來解釋RL理論的基礎。接下來的部分涵蓋了價值函數近似(Value Function Approximation),這是RL中的一項關鍵技術,並探討了各種策略近似(Policy Approximations),如策略梯度方法(Policy Gradient Methods)和先進算法,如近端策略優化(Proximal Policy Optimization, PPO)。

本書還深入探討了進階主題,包括分散式強化學習(Distributed Reinforcement Learning)、好奇心驅動的探索(Curiosity-Driven Exploration)以及著名的AlphaZero算法,為讀者提供這些尖端技術的詳細說明。

《強化學習的藝術》(The Art of Reinforcement Learning)專注於解釋算法及其背後的直覺,並包含實用的源代碼範例,您可以用來實現RL算法。完成本書後,您將對強化學習背後的概念、數學和算法有深入的理解,使其成為AI從業者、研究人員和學生的重要資源。

您將學到的內容:

- 理解強化學習的基本概念和特徵,包括它與其他AI和非互動式機器學習方法的區別
- 將問題建模為馬可夫決策過程,並學習如何使用動態規劃、蒙地卡羅方法和時間差學習來評估和優化策略
- 利用技術來近似價值函數和策略,包括線性和非線性價值函數近似及策略梯度方法
- 理解分散式強化學習的架構和優勢
- 掌握好奇心驅動的探索概念及其如何用於改善強化學習代理
- 探索AlphaZero算法及其如何擊敗專業圍棋選手

本書適合對象:

機器學習工程師、數據科學家、軟體工程師和開發人員,想要將強化學習算法整合到他們的專案和應用中。

作者簡介

Michael Hu is a skilled software engineer with over a decade of experience in designing and implementing enterprise-level applications. He's a passionate coder who loves to delve into the world of mathematics and has a keen interest in cutting-edge technologies like machine learning and deep learning, with a particular interest in deep reinforcement learning. He has build various open-source projects on Github, which closely mimic the state-of-the-art reinforcement learning algorithms developed by DeepMind, such as AlphaZero, MuZero, and Agent57. Fluent in both English and Chinese, Michael currently resides in the bustling city of Shanghai, China.

作者簡介(中文翻譯)

胡明凱是一位技術精湛的軟體工程師,擁有超過十年的企業級應用程式設計與實作經驗。他是一位熱愛編程的開發者,喜歡深入數學的世界,並對機器學習和深度學習等尖端技術有濃厚的興趣,特別是深度強化學習。他在GitHub上建立了多個開源專案,這些專案緊密模仿了DeepMind開發的最先進強化學習演算法,如AlphaZero、MuZero和Agent57。胡明凱精通英語和中文,目前居住在中國繁華的城市上海。