Parametrized, Deformed and General Neural Networks
暫譯: 參數化、變形與通用神經網絡
Anastassiou, George a.
- 出版商: Springer
- 出版日期: 2024-10-03
- 售價: $8,810
- 貴賓價: 9.5 折 $8,370
- 語言: 英文
- 頁數: 853
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031430239
- ISBN-13: 9783031430237
海外代購書籍(需單獨結帳)
相關主題
商品描述
In this book, we introduce the parametrized, deformed and general activation function of neural networks. The parametrized activation function kills much less neurons than the original one. The asymmetry of the brain is best expressed by deformed activation functions. Along with a great variety of activation functions, general activation functions are also engaged. Thus, in this book, all presented is original work by the author given at a very general level to cover a maximum number of different kinds of neural networks: giving ordinary, fractional, fuzzy and stochastic approximations. It presents here univariate, fractional and multivariate approximations. Iterated sequential multi-layer approximations are also studied. The functions under approximation and neural networks are Banach space valued.
商品描述(中文翻譯)
在本書中,我們介紹了參數化、變形和一般的神經網絡激活函數。參數化激活函數比原始的激活函數對神經元的損失要少得多。大腦的不對稱性最能通過變形激活函數來表達。除了各種各樣的激活函數外,還涉及了一般激活函數。因此,在本書中,所有內容均為作者的原創工作,並以非常一般的層次呈現,以涵蓋最多種類的神經網絡:提供普通、分數、模糊和隨機近似。這裡呈現了一元、分數和多元近似。還研究了迭代序列多層近似。所近似的函數和神經網絡都是巴拿赫空間值的。