Fractional and Multivariable Calculus: Model Building and Optimization Problems (Springer Optimization and Its Applications)
暫譯: 分數與多變量微積分:模型建構與優化問題(Springer優化及其應用)

A.M. Mathai, H.J. Haubold

  • 出版商: Springer
  • 出版日期: 2017-08-04
  • 售價: $3,150
  • 貴賓價: 9.5$2,993
  • 語言: 英文
  • 頁數: 234
  • 裝訂: Hardcover
  • ISBN: 3319599925
  • ISBN-13: 9783319599922
  • 相關分類: 微積分 Calculus
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models.  Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations.

The first chapter begins with an introduction to fractional calculus moving on to discuss fractional integrals, fractional derivatives, fractional differential equations and their solutions.  Multivariable calculus is covered in the second chapter and introduces the fundamentals of multivariable calculus (multivariable functions, limits and continuity, differentiability, directional derivatives and expansions of multivariable functions). Illustrative examples, input-output process, optimal recovery of functions and approximations are given; each section lists an ample number of exercises to heighten understanding of the material. Chapter three  discusses deterministic/mathematical and optimization models evolving from differential equations, difference equations, algebraic models, power function models, input-output models and pathway models. Fractional integral and derivative models are examined.  Chapter four covers non-deterministic/stochastic models. The random walk model, branching process model, birth and death process model, time series models, and regression type models are examined. The fifth chapter covers optimal design. General linear models from a statistical point of view are introduced; the Gauss–Markov theorem, quadratic forms, and generalized inverses of matrices are covered. Pathway, symmetric, and asymmetric models are covered in chapter six, the concepts are illustrated with graphs.


商品描述(中文翻譯)

這本教科書以模型建構和優化問題的背景,提供了一種嚴謹的多變量微積分方法。這個全面的概述基於2008年至2012年在五所SERC學校的講座,涵蓋了廣泛的主題,使讀者能夠理解和創建確定性及非確定性模型。數學、統計學、物理學、工程學和生物科學的研究人員、高年級本科生和研究生將會發現這本書是尋找適當模型以描述現實情況的寶貴資源。

第一章以分數微積分的介紹開始,接著討論分數積分、分數導數、分數微分方程及其解。第二章涵蓋多變量微積分,介紹多變量微積分的基本概念(多變量函數、極限與連續性、可微性、方向導數及多變量函數的展開)。提供了說明性範例、輸入-輸出過程、函數的最佳恢復及近似,每個部分列出了大量練習題以加深對材料的理解。第三章討論從微分方程、差分方程、代數模型、幾何幫助模型、輸入-輸出模型和路徑模型演變而來的確定性/數學模型和優化模型。檢視了分數積分和導數模型。第四章涵蓋非確定性/隨機模型,檢視隨機漫步模型、分支過程模型、出生與死亡過程模型、時間序列模型和回歸類型模型。第五章涵蓋最佳設計,從統計的角度介紹一般線性模型;涵蓋高斯-馬可夫定理、二次型及矩陣的廣義逆。第六章涵蓋路徑模型、對稱模型和非對稱模型,並用圖形來說明這些概念。