Sensitivity Analysis in Remote Sensing (SpringerBriefs in Earth Sciences)
暫譯: 遙感中的敏感度分析(春天地球科學簡報)
Eugene A. Ustinov
- 出版商: Springer
- 出版日期: 2015-04-14
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 144
- 裝訂: Paperback
- ISBN: 3319158406
- ISBN-13: 9783319158402
海外代購書籍(需單獨結帳)
商品描述
This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented.
Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inverse problems of remote sensing. They also play an important role already while designing the remote sensing experiment, where they are used to estimate the retrieval uncertainties of the geophysical parameters with given measurement errors of the instrument, thus providing means for formulations of corresponding requirements to the specific remote sensing instrument.
If the quantitative models of geophysical objects can be formulated in an analytic form, then sensitivity analysis is reduced to differential calculus. But in most cases, the practical geophysical models used in remote sensing are based on numerical solutions of forward problems – differential equations with initial and/or boundary conditions. As a result, these models cannot be formulated in an analytic form and this is where the methods of SA become indispensable.
This book is intended for a wide audience. The beginners in remote sensing could use it as a single source, covering key issues of SA, from general principles, through formulation of corresponding linearized and adjoint problems, to practical applications to uncertainty analysis and inverse problems in remote sensing. The experts, already active in the field, may find useful the alternative formulations of some key issues of SA, for example, use of individual observables, instead of a widespread use of the cumulative cost function. The book also contains an overview of author’s matrix operator approach to formulation of adjoint problems for forward problems based on the higher-order partial differential equations. This approach still awaits its publication in the periodic literature and thus may be of interest to readership across all levels of expertise.
商品描述(中文翻譯)
這本書詳細介紹了靈敏度分析的一般原則及其在遙感實驗樣本案例中的應用。特別強調了伴隨問題的應用,因為在許多實際情況下,它們的效率更高,儘管對初學者來說,其表述可能顯得不直觀。特別關注基於高階偏微分方程的前向問題,並提出了一種新穎的矩陣運算子方法來表述相應的伴隨問題。
靈敏度分析(Sensitivity Analysis, SA)對於物理物體的定量模型,與微分計算對於函數的作用相同。SA 提供了模型輸出參數(可觀測量)對輸入參數的導數。在遙感中,SA 提供了計算雅可比矩陣的計算機高效方法,這些雅可比矩陣是可觀測量對感興趣的地球物理參數的偏導數矩陣。雅可比矩陣用於解決相應的遙感反問題。在設計遙感實驗時,它們也扮演著重要角色,因為它們用於估算在給定儀器測量誤差下的地球物理參數的檢索不確定性,從而為特定遙感儀器的相應要求提供了依據。
如果地球物理物體的定量模型可以以解析形式表述,那麼靈敏度分析就簡化為微分計算。但在大多數情況下,遙感中使用的實際地球物理模型是基於前向問題的數值解——帶有初始條件和/或邊界條件的微分方程。因此,這些模型無法以解析形式表述,這就是靈敏度分析方法變得不可或缺的地方。
這本書旨在面向廣泛的讀者群。遙感初學者可以將其作為單一來源,涵蓋靈敏度分析的關鍵問題,從一般原則到相應的線性化和伴隨問題的表述,再到在遙感中的不確定性分析和反問題的實際應用。已經活躍於該領域的專家可能會發現一些靈敏度分析關鍵問題的替代表述是有用的,例如,使用單個可觀測量,而不是廣泛使用的累積成本函數。這本書還包含了作者對基於高階偏微分方程的前向問題的伴隨問題表述的矩陣運算子方法的概述。這種方法仍在等待其在定期文獻中的發表,因此可能對各個專業水平的讀者都具有興趣。