Unsupervised Learning in Space and Time: A Modern Approach for Computer Vision Using Graph-Based Techniques and Deep Neural Networks
暫譯: 空間與時間中的無監督學習:使用基於圖形的技術和深度神經網絡的現代計算機視覺方法
Leordeanu, Marius
- 出版商: Springer
- 出版日期: 2021-04-18
- 售價: $6,780
- 貴賓價: 9.5 折 $6,441
- 語言: 英文
- 頁數: 298
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030421309
- ISBN-13: 9783030421304
-
相關分類:
Computer Vision
海外代購書籍(需單獨結帳)
商品描述
This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field.
Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts.
Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.
Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.
商品描述(中文翻譯)
這本書探討了人工智慧中最重要的未解決問題之一:在無監督的情況下,從大量低成本的時空視覺數據中學習的任務。書中涵蓋了重要的科學發現和研究成果,重點關注該領域的最新進展。
本書呈現出一個連貫的結構,邏輯性地將新穎的數學公式和高效的計算解決方案連接起來,涵蓋了一系列無監督學習任務,包括視覺特徵匹配、學習與分類、物體發現以及視頻中的語義分割。書的最後部分提出了一種針對多代學生-教師神經網絡的視覺學習通用策略,並對無監督學習在現實世界中的未來提供了獨特的見解。
本書以新穎的方式應對這一困難問題,詳細回顧了幾種高效的最先進無監督學習算法,並分析了它們在各種任務、數據集和實驗設置中的表現。通過強調這些方法之間的相互聯繫,許多看似不同的問題被優雅地統一在一起。
作為應對該領域令人興奮挑戰所需的計算工具和算法的寶貴指南,本書是研究生尋求更深入理解無監督學習的必讀之作,同時也是計算機視覺、機器學習、機器人技術及相關學科研究人員的重要參考。
作者簡介
Dr. Marius Leordeanu is an Associate Professor (Senior Lecturer) at the Computer Science & Engineering Department, Polytechnic University of Bucharest and a Senior Researcher at the Institute of Mathematics of the Romanian Academy (IMAR), Bucharest, Romania. In 2014, he was awarded the Grigore Moisil Prize, the most prestigious award in mathematics bestowed by the Romanian Academy, for his work on unsupervised learning.
作者簡介(中文翻譯)
馬里烏斯·萊奧爾德亞努博士是布加勒斯特理工大學計算機科學與工程系的副教授(高級講師),同時也是羅馬尼亞科學院數學研究所(IMAR)的高級研究員。2014年,他因在無監督學習方面的研究而獲得了羅馬尼亞科學院頒發的數學界最高榮譽——格里戈雷·莫伊希爾獎。