The Maximum Consensus Problem: Recent Algorithmic Advances
暫譯: 最大共識問題:近期演算法進展

Tat-Jun Chin, David Suter

  • 出版商: Morgan & Claypool
  • 出版日期: 2017-02-27
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 196
  • 裝訂: Paperback
  • ISBN: 1627052925
  • ISBN-13: 9781627052924
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Outlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The maximum consensus problem refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.

商品描述(中文翻譯)

離群值污染的數據在計算機視覺中是常見的現象。為了使計算機視覺應用在實際環境中可靠且準確地運行,必須以穩健的方式處理輸入數據。在這個背景下,最大共識穩健標準扮演著關鍵角色,允許從嘈雜且易受離群值影響的視覺測量中估計感興趣的數量。最大共識問題是指根據最大共識標準優化感興趣數量的問題。本書提供了執行此優化的算法概述。重點在於算法的基本操作或「內部運作」,以及它們在最優性和效率方面的數學特徵。本書還強調了這些技術在常見計算機視覺任務中的適用性。通過將現有技術集中在一篇文章中,本書旨在促進這個在理論上有趣且在實踐中重要的領域的進一步發展。

最後瀏覽商品 (20)