Distributed Network Structure Estimation Using Consensus Methods (Synthesis Lectures on Communications)
暫譯: 使用共識方法的分散式網路結構估計(通訊綜合講座)

Sai Zhang, Cihan Tepedelenlioglu, Andreas Spanias

  • 出版商: Morgan & Claypool
  • 出版日期: 2018-03-02
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 90
  • 裝訂: Hardcover
  • ISBN: 1681732920
  • ISBN-13: 9781681732923
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

商品描述(中文翻譯)

在分散式無線感測器網路(WSN)中,檢測和估計的領域有多種應用,包括軍事監控、可持續性、健康監測和物聯網(IoT)。與有線集中式感測器網路相比,分散式 WSN 具有許多優點,包括可擴展性和對感測器節點故障的魯棒性。在本書中,我們探討估計分散式 WSN 結構的問題。首先,我們提供以下方面的文獻回顧:(a)圖論;(b)網路區域估計;以及(c)現有的共識演算法,包括平均共識和最大共識。其次,我們介紹了一種用於計算具有噪聲通訊通道的無線感測器網路中節點總數的分散式演算法。接著,描述了一種分散式網路度數分佈估計(DNDD)演算法。DNDD 演算法基於平均共識和網路內的經驗質量函數估計。最後,描述了一種完全分散式的演算法,用於估計無線感測器網路的中心和覆蓋區域。所介紹的演算法適用於大多數連接的分散式網路。這些演算法的性能進行了理論分析,並進行了模擬以驗證理論結果。在本書中,我們還描述了如何使用所介紹的演算法來學習全域數據信息和全域數據區域。