Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and
暫譯: 用於預測的循環神經網絡:學習算法、架構與應用
Danilo Mandic, Jonathon Chambers
- 出版商: Wiley
- 出版日期: 2001-09-05
- 售價: $1,400
- 貴賓價: 9.8 折 $1,372
- 語言: 英文
- 頁數: 304
- 裝訂: Hardcover
- ISBN: 0471495174
- ISBN-13: 9780471495178
-
相關分類:
Algorithms-data-structures
無法訂購
買這商品的人也買了...
-
$680$537 -
$860$679 -
$420$328 -
$590$466 -
$590$460 -
$600$540 -
$720$562 -
$720$569 -
$290$247 -
$690$587 -
$750$638 -
$490$382 -
$720$569 -
$560$476 -
$450$356 -
$720$569 -
$720$569 -
$860$679 -
$780$663 -
$550$468 -
$390$304 -
$520$442 -
$490$387 -
$650$514 -
$880$695
商品描述
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
- Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting
- Examines stability and relaxation within RNNs
- Presents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation
- Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration
- Describes strategies for the exploitation of inherent relationships between parameters in RNNs
- Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing
商品描述(中文翻譯)
新技術在工程、物理學和生物醫學領域對數位信號處理提出了越來越複雜的方法需求。透過展示最新的研究成果,作者展示了如何實現即時遞迴神經網絡(RNNs),以擴展傳統信號處理技術的範疇並幫助解決預測問題。在本書中,神經網絡被視為大規模互聯的非線性自適應濾波器。
- 分析RNNs與各種非線性模型和濾波器之間的關係,並介紹時空架構以及模組化和嵌套的概念。
- 檢視RNNs中的穩定性和放鬆性。
- 提出非線性自適應濾波器的在線學習算法,並介紹利用先驗和後驗誤差、數據重用適應和正規化概念的新範式。
- 研究基於優化技術(如收縮映射和不動點迭代)的在線學習算法的收斂性和穩定性。
- 描述利用RNNs中參數之間固有關係的策略。
- 討論可預測性和非線性檢測等實際問題,並包括在空氣污染建模和預測、吸引子發現和混沌、心電圖信號處理以及語音處理等領域的幾個實際應用。
遞迴神經網絡的預測 提供了對遞迴神經網絡的學習算法、架構和穩定性的新見解,因此將立即引起讀者的興趣。它為研究人員、學者和研究生提供了廣泛的背景,使他們能夠在新應用中應用這些網絡。