Automated Machine Learning: Methods, Systems, Challenges (Hardcover)
暫譯: 自動化機器學習:方法、系統與挑戰(精裝版)
Hutter, Frank, Kotthoff, Lars, Vanschoren, Joaquin
- 出版商: Springer
- 出版日期: 2019-05-28
- 售價: $2,160
- 貴賓價: 9.5 折 $2,052
- 語言: 英文
- 頁數: 219
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030053172
- ISBN-13: 9783030053178
-
相關分類:
Machine Learning
-
相關翻譯:
自動機器學習 (AutoML):方法、系統與挑戰 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,176Database Management Systems, 3/e (IE-Paperback)
-
$4,240$4,028 -
$1,780$1,744 -
$1,200$1,140 -
$1,410$1,340 -
$2,470$2,347 -
$1,617Deep Learning (Hardcover)
-
$948Scala for the Impatient,2/e
-
$1,150$1,093 -
$2,640Natural Language Processing with PyTorch
-
$1,750$1,715 -
$1,850$1,758 -
$1,490$1,416 -
$3,780Deep Learning for Nlp and Speech Recognition (Hardcover)
-
$1,420$1,392 -
$1,995The Pragmatic Programmer: your journey to mastery, 2/e (20th Anniversary Edition) (Hardcover)
-
$2,124Database Internals: A Deep Dive Into How Distributed Data Systems Work (Paperback)
-
$2,446Deep Learning for Coders with Fastai and Pytorch : AI Applications Without a PhD (Paperback)
-
$2,800$2,660 -
$3,150$2,993 -
$1,880Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications (Paperback)
-
$1,260The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life (Paperback)
-
$2,280$2,166 -
$2,446Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, 2/e (Paperback)
-
$2,080$1,976
相關主題
商品描述
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
商品描述(中文翻譯)
這本開放存取的書籍提供了自動化機器學習(Automated Machine Learning, AutoML)的一個全面概述,收集了基於這些方法的現有系統的描述,並討論了AutoML系統的第一系列國際挑戰。商業機器學習應用的近期成功以及該領域的快速增長,對於可以輕鬆使用且不需要專家知識的現成機器學習方法產生了高需求。然而,許多近期的機器學習成功在很大程度上依賴於人類專家,他們手動選擇適當的機器學習架構(深度學習架構或更傳統的機器學習工作流程)及其超參數。為了解決這個問題,AutoML領域旨在基於優化和機器學習本身的原則,逐步自動化機器學習。這本書為研究人員和高級學生提供了進入這個快速發展領域的切入點,同時也為希望在工作中使用AutoML的實務工作者提供了參考。