Machine Learning Engineering with Python: Manage the production life cycle of machine learning models using MLOps with practical examples
暫譯: 使用 Python 的機器學習工程:透過實務範例管理機器學習模型的生產生命週期與 MLOps

McMahon, Andrew P.

商品描述

Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments

 

Key Features:

  • Explore hyperparameter optimization and model management tools
  • Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
  • Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases

 

Book Description:

Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.

 

Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.

 

By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.

 

What You Will Learn:

  • Find out what an effective ML engineering process looks like
  • Uncover options for automating training and deployment and learn how to use them
  • Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
  • Understand what aspects of software engineering you can bring to machine learning
  • Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
  • Perform hyperparameter tuning in a relatively automated way

 

Who this book is for:

This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.

商品描述(中文翻譯)

透過建立可擴展且穩健的解決方案來提升您的機器學習模型的價值,以便在生產環境中提供服務

主要特點:


  • 探索超參數優化和模型管理工具

  • 學習在 Python 中的物件導向程式設計和函數式程式設計,以建立您自己的機器學習庫和套件

  • 探索關鍵的機器學習工程模式,如微服務和提取轉換機器學習(Extract Transform Machine Learn, ETML)模式及其使用案例

書籍描述:

機器學習工程是一個蓬勃發展的學科,位於軟體開發和機器學習的交界處。本書將幫助從事機器學習和 Python 的開發人員將他們的知識付諸實踐,創建高品質的機器學習產品和服務。

《使用 Python 的機器學習工程》採取實作導向的方法,幫助您掌握基本的技術概念、實作模式和開發方法論,讓您迅速上手。您將首先了解機器學習開發生命週期的關鍵步驟,然後進入實際示例,掌握建立和部署穩健的機器學習解決方案。隨著進展,您將探索如何為所有項目以一致的方式創建自己的訓練和部署工具集。本書還將幫助您實作部署架構,並發現擴展解決方案的方法,同時建立有效使用雲端工具的堅實理解。最後,您將通過範例來解決典型的商業問題。

在本書結束時,您將能夠使用各種技術構建端到端的機器學習服務,並設計自己的流程以實現一致的機器學習工程效能。

您將學到什麼:


  • 了解有效的機器學習工程流程的樣貌

  • 揭示自動化訓練和部署的選項,並學習如何使用它們

  • 發現如何構建自己的包裝庫,以封裝您的數據科學和機器學習邏輯及解決方案

  • 理解您可以將哪些軟體工程的方面應用於機器學習

  • 獲得使用適當雲端技術調整軟體工程以適應機器學習的見解

  • 以相對自動化的方式執行超參數調整

本書適合誰:

本書適合機器學習工程師、數據科學家和希望構建具有機器學習組件的穩健軟體解決方案的軟體開發人員。如果您是管理或希望了解這些系統的生產生命週期的人,本書將對您有所幫助。需要具備中級的 Python 知識。