Convex Optimization Algorithms
暫譯: 凸優化演算法
Dimitri P. Bertsekas
- 出版商: Athena Scientific
- 出版日期: 2015-02-10
- 售價: $3,370
- 貴賓價: 9.9 折 $3,336
- 語言: 英文
- 頁數: 576
- 裝訂: Hardcover
- ISBN: 1886529280
- ISBN-13: 9781886529281
-
相關分類:
Algorithms-data-structures
無法訂購
買這商品的人也買了...
-
$3,819$3,781 -
$2,600$2,470 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$1,548Introduction to Electrodynamics, 4/e (Hardcover)
-
$1,460Foundations of Machine Learning, 2/e (Hardcover)
商品描述
This book, developed through class instruction at MIT over the last 15 years, provides an accessible, concise, and intuitive presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning.
Among its features, the book:
* Develops comprehensively the theory of descent and approximation methods, including gradient and subgradient projection methods, cutting plane and simplicial decomposition methods, and proximal methods
* Describes and analyzes augmented Lagrangian methods, and alternating direction methods of multipliers
* Develops the modern theory of coordinate descent methods, including distributed asynchronous convergence analysis
* Comprehensively covers incremental gradient, subgradient, proximal, and constraint projection methods
* Includes optimal algorithms based on extrapolation techniques, and associated rate of convergence analysis
* Describes a broad variety of applications of large-scale optimization and machine learning
* Contains many examples, illustrations, and exercises
* Is structured to be used conveniently either as a standalone text for a class on convex analysis and optimization, or as a theoretical supplement to either an applications/convex optimization models class or a nonlinear programming class
商品描述(中文翻譯)
這本書是透過麻省理工學院(MIT)過去15年的課堂教學所開發,提供了一個易於理解、簡潔且直觀的凸優化問題解決算法的介紹。它依賴於嚴謹的數學分析,但同時也旨在提供直觀的闡述,並在可能的情況下利用可視化來輔助理解。這一點得益於廣泛使用的對偶性分析和算法概念,這些概念本質上適合幾何解釋。書中特別強調現代發展及其在大規模資源分配問題、信號處理和機器學習等領域的廣泛應用。
本書的特點包括:
* 全面發展下降法和近似法的理論,包括梯度法和次梯度投影法、切平面法和簡單形分解法,以及近端法。
* 描述和分析增強拉格朗日法,以及交替方向乘子法。
* 發展現代坐標下降法的理論,包括分散式非同步收斂分析。
* 全面涵蓋增量梯度法、次梯度法、近端法和約束投影法。
* 包含基於外推技術的最佳算法及其相關的收斂速率分析。
* 描述大規模優化和機器學習的各種應用。
* 包含許多範例、插圖和練習題。
* 結構設計方便用作凸分析和優化課程的獨立教材,或作為應用/凸優化模型課程或非線性規劃課程的理論補充。